• Title/Summary/Keyword: Decentralized

Search Result 956, Processing Time 0.024 seconds

Time-Coobservability in the Decentralized Supervisory Control of Timed Discrete Event Systems (시간 이산 사건 시스템의 분산 관리 제어에서 시간-상호관측가능성)

  • Park, Seong-Jin;Choi, Ho-Lim
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.4
    • /
    • pp.396-399
    • /
    • 2009
  • This paper presents the notion of time-coobservability as a core condition far the existence of a decentralized supervisor achieving a given language specification in a timed discrete event system (TDES). A TDES is modeled by the framework of Brandin & Wonham [5], and the decentralized supervisory control architecture presented is extended from the untimed architecture of Yoo & Lafortune [1]. To develop the time-coobservability of a language specification, specifically this paper presents the C&P time-coobservability and D&A time-coobservability in the consideration of the event tick and forcing mechanism of decentralized supervisors.

Object-Transportation Control of Cooperative AGV Systems Based on Virtual-Passivity Decentralized Control Algorithm

  • Suh, Jin-Ho;Lee, Young-Jin;Lee, Kwon-Soon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1720-1730
    • /
    • 2005
  • Automatic guided vehicle in the factory has an important role to advance the flexible manufacturing system. In this paper, we propose a novel object-transportation control algorithm of cooperative AGV systems to apply decentralized control to multiple AGV systems. Each AGV system is under nonholonomic constraints and conveys a common object-transportation in a horizontal plain. Moreover it is shown that cooperative robot systems ensure stability and the velocities of augmented systems convergence to a scaled multiple of each desired velocity field for cooperative AGV systems. Finally, the application of proposed virtual passivity-based decentralized control algorithm via system augmentation is applied to trace a circle. Finally, the simulation and experimental results for the object-transportation by two AGV systems illustrates the validity of the proposed virtual-passivity decentralized control algorithm.

Overlapping Decentralized Robust EA Control Design for an Active Suspension System of a Full Car Model (전차량의 능동 현가장치 제어를 위한 중복 분산형 견실 고유구조 지정 제어기 설계)

  • Jung, Yong-Ha;Choi, Jae-Weon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.206-213
    • /
    • 2001
  • An overlapping decentralized robust EA(eigenstructure assignment) controller is designed for an active suspension system of a vehicle based on a full car model with 7-degree of freedom. Using overlapping decomposition, the full car model is decentralized by two half car models. For each half car model, an effective and disturbance suppressible controller can be obtained by assigning appropriately a left eigenstructure of the system. The performance of the proposed overlapping decentralized robust EA controller is compared with that of a conventional centralized EA controller through computer simulations.

  • PDF

Decentralized Sliding Mode Feedback Control Design Method for a Large Scale System with a Poly topic Models (폴리토픽 모델을 갖는 대규모 시스템을 위한 비집중화 슬라이딩 모드 제어기 설계)

  • Choi, Han-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.1
    • /
    • pp.1-4
    • /
    • 2010
  • Based on the sliding mode control theory, a decentralized controller design method is developed for a large scale system with a poly topic model. In terms of LMIs, we derive sufficient conditions for the existence of the decentralized controller guaranteeing a stable sliding motion. We also give an LMI-based control design algorithm. Finally, the proposed method is applied to decentralized stabilization of double-inverted pendulums. Simulation results show that our method gives not only the robust stability but perfect rejection of norm-bounded uncertainties.

Optimal and decentralized control of power system frequency (전력계통 주파수의 최적분산제어에 관한 연구)

  • 박영문;이승재;서보혁
    • 전기의세계
    • /
    • v.29 no.10
    • /
    • pp.667-677
    • /
    • 1980
  • A new approach for optimal decentralized load-frequency control in a multi-area interconnected power system is presented, which includes the optimal determination of decentralized load-frequency controller, observer for unmeasurable local states and load disturbances, quadratic estimator for tie-line power flow information transmitted at intervals. The optimal design of the decentralized controller is based on a modified application of the singular perturbation theory, and the decentralized Luenberger obeserver uses techniques of state augmentation for exponential disturbance functions and the representation of tie-line power flow states as non-directly-controlled inputs. The approach presented herein is numerically tested through Elgerd's two-area load-frequency system model, and the results demonstrate remarkable advantages over the conventional ones.

  • PDF

A Study on the Feedforward Neural Network Based Decentralized Controller for the Power System Stabilization (전력계토 안정화 제어를 위한 신경회로만 분산체어기의 구성에 관한 연구)

  • 최면송;박영문
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.4
    • /
    • pp.543-552
    • /
    • 1994
  • This paper presents a decentralized quadratic regulation architecture with feedforward neural networks for the control problem of complex systems. In this method, the decentralized technique was used to treat several simple subsystems instead of a full complex system in order to reduce training time of neural networks, and the neural networks' nonlinear mapping ability is exploited to handle the nonlinear interaction variables between subsystems. The decentralized regulating architecture is composed of local neuro-controllers, local neuro-identifiers and an overall interaction neuro-identifier. With the interaction neuro-identifier that catches interaction characteristics, a local neuro-identifier is trained to simulate a subsystem dynamics. A local neuro-controller is trained to learn how to control the subsystem by using generalized Backprogation Through Time(BTT) algorithm. The proposed neural network based decentralized regulating scheme is applied in the power System Stabilization(PSS) control problem for an imterconnected power system, and compared with that by a conventional centralized LQ regulator for the power system.

Wireless sensor network for decentralized damage detection of building structures

  • Park, Jong-Woong;Sim, Sung-Han;Jung, Hyung-Jo
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.399-414
    • /
    • 2013
  • The smart sensor technology has opened new horizons for assessing and monitoring structural health of civil infrastructure. Smart sensor's unique features such as onboard computation, wireless communication, and cost effectiveness can enable a dense network of sensors that is essential for accurate assessment of structural health in large-scale civil structures. While most research efforts to date have been focused on realizing wireless smart sensor networks (WSSN) on bridge structures, relatively less attention is paid to applying this technology to buildings. This paper presents a decentralized damage detection using the WSSN for building structures. An existing flexibility-based damage detection method is extended to be used in the decentralized computing environment offered by the WSSN and implemented on MEMSIC's Imote2 smart sensor platform. Numerical simulation and laboratory experiment are conducted to validate the WSSN for decentralized damage detection of building structures.

Decentralized Moving Average Filtering with Uncertainties

  • Song, Il Young
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.418-422
    • /
    • 2016
  • A filtering algorithm based on the decentralized moving average Kalman filter with uncertainties is proposed in this paper. The proposed filtering algorithm presented combines the Kalman filter with the moving average strategy. A decentralized fusion algorithm with the weighted sum structure is applied to the local moving average Kalman filters (LMAKFs) of different window lengths. The proposed algorithm has a parallel structure and allows parallel processing of observations. Hence, it is more reliable than the centralized algorithm when some sensors become faulty. Moreover, the choice of the moving average strategy makes the proposed algorithm robust against linear discrete-time dynamic model uncertainties. The derivation of the error cross-covariances between the LMAKFs is the key idea of studied. The application of the proposed decentralized fusion filter to dynamic systems within a multisensor environment demonstrates its high accuracy and computational efficiency.

Influences of Information Technology Structure Taxonomy on Business Performance - Moderating Effect of Organization Structure and Control System - (정보기술구조유형이 경영성과에 미치는 영향 - 조직구조와 통제시스템의 조절효과를 중심으로 -)

  • Kim, Moon-Shik
    • Asia pacific journal of information systems
    • /
    • v.9 no.1
    • /
    • pp.17-38
    • /
    • 1999
  • While the value of information technology has long been a hot issue, few solid results have been found as of yet. It is partly due to methodological factors and model underspecifcation. This study empirically develops a ITS(information technology structure) taxonomy and investigates the relationships between ITS taxonomy and business performance in the Korean firms. Among factors that impact business performance, organization structure and control system are selected and they are hypothesized to moderate-the relationships between ITS taxonomy and business performance. By surveying 91 manufacturing firms and applying hierarchical cluster analysis, four ITS are identified : centralized, decentralized, centralized cooperative, decentralized cooperative. ANOVA, correlation analysis and crosstable analysis say the presence of moderating effect of organization structure and control system. Cooperative ITS is best in business performance. Centralized ITS is related to functional organizational form. Decentralized ITS is related to product organizational form with decentralized decision making, Centralized cooperative ITS is related to matrix organizational form. Decentralized cooperative ITS is related to matrix organizational form with high integration. These findings have implications for the opportunities and challenges to match information technology with organization structure and control system.

  • PDF

A study on Indirect Adaptive Decentralized Learning Control of the Vertical Multiple Dynamic System

  • Lee, Soo-Cheol;Park, Seok-Sun;Lee, Jeh-Won
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.62-66
    • /
    • 2006
  • The learning control develops controllers that learn to improve their performance at executing a given task, based on experience performing this specific task. In a previous work, the authors presented an iterative precision of linear decentralized learning control based on p-integrated learning method for the vertical dynamic multiple systems. This paper develops an indirect decentralized learning control based on adaptive control method. The original motivation of the learning control field was learning in robots doing repetitive tasks such as an assembly line works. This paper starts with decentralized discrete time systems, and progresses to the robot application, modeling the robot as a time varying linear system in the neighborhood of the nominal trajectory, and using the usual robot controllers that are decentralized, treating each link as if it is independent of any coupling with other links. Some techniques will show up in the numerical simulation for vertical dynamic robot. The methods of learning system are shown for the iterative precision of each link.