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Abstract

A filtering algorithm based on the decentralized moving average Kalman filter with uncertainties is proposed in this paper. The pro-

posed filtering algorithm presented combines the Kalman filter with the moving average strategy. A decentralized fusion algorithm with

the weighted sum structure is applied to the local moving average Kalman filters (LMAKFs) of different window lengths. The proposed

algorithm has a parallel structure and allows parallel processing of observations. Hence, it is more reliable than the centralized algorithm

when some sensors become faulty. Moreover, the choice of the moving average strategy makes the proposed algorithm robust against

linear discrete-time dynamic model uncertainties. The derivation of the error cross-covariances between the LMAKFs is the key idea

of studied. The application of the proposed decentralized fusion filter to dynamic systems within a multisensor environment demon-

strates its high accuracy and computational efficiency.
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1. INTRODUCTION

There is a growing concern about the potential application of

multisensor data fusion in diverse areas such as guidance,

robotics, aerospace, target tracking, signal processing, and control

[1,2]. Swift progress in communications, low-power computing,

and sensing hardware have resulted in an abundance of

commercially available sensor nodes. The main challenge now is

to develop efficient methods for the automatic fusion and

interpretation of the information generated by multisensor data

fusion.

Multisensor data fusion is typically carried out for 1) reducing

the overall redundant information obtained from different sensors,

2) increasing information gain by using multiple sensors, and 3)

increasing the accuracy and decreasing the uncertainty of the

system. Further, multisensor data fusion can provide benefits such

as extended temporal and spatial coverage, reduced ambiguity,

enhanced spatial resolution, and increased dimensionality of the

measurement space. In general, two basic fusion methods are

commonly used to process measured sensor data; these methods

are discussed below.

The first approach is called centralized fusion estimation. The

fusion center directly receives all measurement data from all local

sensors and processes them in real time. One advantage of the

centralized estimation is that it causes minimal information loss.

However, the centralized estimation approach has several serious

drawbacks, including poor survivability and reliability, as well as

heavy communication and computational burden. Further the

multisensory environment must be considered ideal, as mentioned

above.

The second approach is called decentralized fusion

estimation, in which every local sensor is attached to a local

processor. In this method, the processor optimally estimates an

object based on its own local measurements and then transmits

its local estimate to the fusion center. Finally, the fusion center

optimally estimates the object by using all received local

estimates. Recently, to overcome the disadvantages of the

centralized estimation, various decentralized and parallel

versions of the standard Kalman filters have been proposed for

linear dynamic systems with a multisensor environment [2-8].

The advantage of this decentralized fusion of filters is that

these parallel structures can lead to an increase in input data

rates and make fault detection and isolation easier. However,

the accuracy of the decentralized filter is generally lower than

that of the centralized filter.

In estimation problems attempting to achieve robustness
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against temporary uncertainty, numerous strategies have been

suggested, rigorously investigated, and have been implemented

over the past few decades. Among them, the moving average

technique has been popular and successful. It is robust against

temporal uncertainty, and thus it has been rigorously

investigated. It has been a general rule that local moving average

Kalman filters (LMAKFs) are typically more robust against

dynamic model uncertainties and numerical errors than standard

local Kalman filters, which utilize all measurements [9-12].

In addition, decentralized moving average fusion filtering

for multiple sensors with equal moving average time intervals

(moving average sizes) has been proposed in [13]. In this case,

all fused LMAKFs with the same moving average time interval

utilize finite measurements over the most recent time interval

[9-12]. 

In this study, we investigate a generalization of [13] for arbitrary

non-equal moving average sizes. This design of decentralized

filters for sensor measurements with non-equal moving average

sizes is more complicated than that for sensor measurements with

equal sizes owing to a lack of common time intervals that contain

all the sensor data; in this case, it is impossible to design a

centralized filtering algorithm. We propose using a decentralized

moving average filter for a set of local sensors with non-equal

moving average sizes. Then, we derive the key differential

equations for error cross-covariances between LMAKFs using the

different moving average sizes. 

The remainder of this paper is organized as follows. The

problem setting is described in Section 2. In Section 3, we present

the main results pertaining to decentralized moving average

filtering for a multisensor environment. Here, the key equations

for determining the cross-covariances between the local moving

average filtering errors are derived. In Section 4, an example for

discrete-time dynamic systems within a multisensor environment

is provided to illustrate the main results, and the concluding

remarks are given in Section 5

2. PROBLEM SETTING

Consider the linear discrete-time dynamic system with N

sensors

 (1)

(2)

where  is the state, and  is the measurement. The

system noise  and the measurement noises ,

 are uncorrelated white Gaussian noises with zero

mean and covariances  and , respectively, and 

are matrices with compatible dimensions. Superscript  denotes

the  sensor, and  is the total number of sensors. 

The initial state , , 

is assumed to be Gaussian and uncorrelated with  and ,

.

Our purpose is to find the decentralized fusion estimate of the

state  based on the overall moving average sensor

measurements  with different moving average time intervals

,  i.e., 

(3)

3. DECENTRALIZED MOVING

AVERAGE FILTER

Now we show that the fusion formula (FF) [8,14] can serve as

the basis for designing a decentralized fusion filter. A new

decentralized fusion moving average filter with non-equal moving

average sizes (NE-filter) includes two stages: LMAKFs

(estimates)  that are computed at the first stage are

linearly fused at the second stage based on the FF.

First step (“Calculation of LMAKFs”). 

(4)

where the number i of a local subsystem is fixed.

Let  denote local moving average estimate of the state

 based on the individual sensor measurements 

. To find , we can apply the optimal

MAKF to the subsystem (4) [9-12]. We obtain the following

differential equations:

(5)
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(6)

determined by the Lyapunov equations [12] on the interval

:

(7)

Thus, we get  LMAKFs  with the corresponding

local error covariances .

Second step (“Fusion of LMAKFs”). 

To express the final NE-filter (estimate)  for the state  in

terms of the LMAKFs , we use the FF. We have 

(8)

where  is the identity matrix, and  are the time-

varying weighted matrices determined by the mean square

criterion.

Theorem 1 [8, 14]. (a) The optimal weights  satisfy

the linear algebraic equations 

, (9)

and they can be explicitly written in the following form

 (10)

where  is the   submatrix of the 

block matrix , 

(b) The fusion error covariance ,

 is given by

 (11)

Equations (9)–(11) defining the unknown weights  and

fusion error covariance  depend on the local covariances ,

which have been determined by (5), and the local cross-cova-

riances given by

 (12)

as given in Theorem 2.

Theorem 2. (a) The local cross-covariances (12) satisfy the

following recursive equations:

(13)

with the following moving average initial conditions:

 (14)

(b) The covariance  in (14) represents the non-

diagonal element of the block covariance matrix , which is

expressed as follows:

(15)

at , which is described by the Lyapunov recursive

equation.

 (16)

with the initial condition 

 (17)

determined by (7).

Thus, equations (5)–(17) completely define the NE-filter.

Remark 1. The LMAKFs  are separated for

different types of sensors, i.e., each local estimate  is

calculated independently of other estimates. Therefore, the

LMAKFs can be implemented in parallel for different sensors (2). 

Remark 2. We may note that the local error covariances

, and the weights  may be pre-

computed, since they do not depend on the sensor measurements

(3), but only on the noise statistics   and  and the system

matrices , which are part of the system model (1), (2).

Thus, once the measurement schedule has been settled, the real-

time implementation of the NE-filter requires only the

computation of the LMAKFs  and the final

suboptimal fusion estimate .

4. NUMERICAL EXAMPLE

Here we verify the NE-filter using a linear model of the motion

of the Ground Moving Target Indicator (GMTI), maintaining

straight and fixed level moving at a constant velocity with
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measurements taken at sampling interval  [15]. The state vector

 consists of position and velocity in each of the two

dimensions; that is, . The system noise  is

zero-mean white Gaussian noise with covariance 

. 

Then the discretized system model is given by

(18)

where  is an uncertain model parameter, a GMTI with the

initial position  [m] and velocity

 [m/s] yielding ,

and the initial covariance of the GMTI is .

The covariances are subjected to , and

sampling interval . For simplicity, we assume that the

uncertain model parameter  takes the form

(19)

where  is the uncertainty interval.

The measurement system includes three sensors , and

, all of them measure position along x- and y-axes. The first

coordinate , related to the x-position, is observable through a

measurement model having three identical local sensors, one of

which is the main sensor, and the others are reserve sensors. We

have 

(20)

where the measurement noises  are also zero-mean

white Gaussian noises with intensities ,

, and .

The LMAKFs for each sensor  are designed for

moving average sizes of , , and ,

respectively. The simulation results of two decentralized fusion

moving average filters with non-equal (NE-filter) and equal (EQ-

filter) moving average sizes and three LMAKFs are shown in

Figs. 1 and 2. All simulations are then evaluated in terms of the

mean square errors (MSEs) of 1000 Monte Carlo runs. In

particular, we focus on the MSEs of the first coordinate , the

x-position, because the time uncertainty  from (18) only

appears at this coordinate. Here,

(21)

where  or . 

Fig. 1 compares the MSEs of NE-filter (“NE”) with three EQ-

filters (“EQ”) having common moving average sizes ,

.

Our point of interest is the behavior of the aforementioned

filters, both inside and outside the time interval .

From Fig. 1, we can observe that inside the time interval ,

the NE-filter is more accurate than the two EQ-filters with moving

average sizes  and . However, the NE-filter

performs slightly worse than the EQ-filter with a moving average

size of , such that

(22)

The reason for the presence of such a robust property (22) is to

compensate for the given uncertainty , as the common moving

average size  for all local sensors (common memory of

LMAKFs) should be minimal. In this case they are equal, i.e.,

. 

On the other hand, outside the , the differences between the

EQ-filters and NE-filters are negligible. In this case, the EQ-filter

with the maximum common moving average size 

is less accurate than the NE-filter, i.e.,

(23)

Fig. 2 illustrates the time histories of the MSEs for the NE-filter

and the three LMAKFs (“LKF”). The figure shows that inside the

, the MSE of the NE-filter is better than that of the LMAKFs

having moving average sizes  and , and that it

is worse than the LMAKF having , i.e.,

 (24)

However, outside the , the NE-filter is better than all

LMAKFs, as shown in Fig. 2, i.e.,
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Fig. 1. MSEs comparison between NE-filter and three EQ-filters.
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(25)

Note that the reduction in the moving average size to zero

 inside the uncertainty interval is impossible owing to the

loss of sensor measurements (20). Thus, the problem in finding

the optimal moving average size  for each individual LMAKFs

is quite complex.

Summarizing the simulation results in Figs. 1 and 2, and using

(22)–(25), we can infer the following relationships between MSEs

inside/outside of the :

 

(26)

Since in actual situations,  is not known in advance, Eq.

(26) shows that the NE-filter is the best choice among all other

filters.

5. CONCLUSIONS

In this paper, we have proposed a new decentralized moving

average filter for a set of local sensors with non-equal moving

average sizes. Further, we have derived the key differential

equations for local cross-covariances between the LMAKFs with

different moving average sizes.

Simulation results and comparison the NE-filter with the EQ-

filters and LMAKFs verify the good estimation accuracy and

robustness of the proposed filter.
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