Browse > Article
http://dx.doi.org/10.12989/sss.2013.12.3_4.399

Wireless sensor network for decentralized damage detection of building structures  

Park, Jong-Woong (Department of Civil and Environmental Engineering, KAIST)
Sim, Sung-Han (School of Urban and Environmental Engineering, UNIST)
Jung, Hyung-Jo (Department of Civil and Environmental Engineering, KAIST)
Publication Information
Smart Structures and Systems / v.12, no.3_4, 2013 , pp. 399-414 More about this Journal
Abstract
The smart sensor technology has opened new horizons for assessing and monitoring structural health of civil infrastructure. Smart sensor's unique features such as onboard computation, wireless communication, and cost effectiveness can enable a dense network of sensors that is essential for accurate assessment of structural health in large-scale civil structures. While most research efforts to date have been focused on realizing wireless smart sensor networks (WSSN) on bridge structures, relatively less attention is paid to applying this technology to buildings. This paper presents a decentralized damage detection using the WSSN for building structures. An existing flexibility-based damage detection method is extended to be used in the decentralized computing environment offered by the WSSN and implemented on MEMSIC's Imote2 smart sensor platform. Numerical simulation and laboratory experiment are conducted to validate the WSSN for decentralized damage detection of building structures.
Keywords
damage detection; decentralized data processing; wireless smart sensor network; smart sensor;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Zimmerman, A.T., Shiraishi, M., Swartz, R.A. and Lynch, J.P. (2008), "Automated modal parameter estimation by parallel processing within wireless monitoring systems", J. Infrastruct. Syst., 14(1), 102-113.   DOI   ScienceOn
2 Zimmerman, A.T. and Lynch, J.P. (2009), "A parallel simulated annealing architecture for model updating in wireless sensor networks", IEEE Sens. J., 9(11), 1503-1510.   DOI   ScienceOn
3 Koo, K., Sung, S. and Jung, H. (2011), "Damage quantification of shear buildings using deflections obtained by modal flexibility", Smart Mater. Struct, 20, 045010.   DOI   ScienceOn
4 Kurata, N., Spencer, B.F. and Ruiz-Sandoval, M. (2005), "Risk monitoring of buildings with wireless sensor networks", Struct. Health Monit., 12(3-4), 315-327.   DOI   ScienceOn
5 Ling, Q., Tian, Z., Yin, Y. and Li, Y. (2009), "Localized structural health monitoring using energy-efficient wireless sensor networks", IEEE Sens. J., 9(11), 1596-1604.   DOI   ScienceOn
6 Lynch, J.P., Sundararajan, A., Law, K.H., Kiremidjian, A.S., Carryer, E., Sohn, H. and Farrar, C.R. (2003), "Field validation of a wireless structural health monitoring system on the Alamosa Canyon Bridge", Proc. of the SPIE, 5057, 267-278
7 Lynch J.P., Sundararajan A., Law K.H., Kiremidjian A.S. and Carryer E. (2004), "Embedding damage detection algorithms in a wireless sensing unit for operational power efficiency", Smart Mater. Struct., 13(4) 800-810   DOI   ScienceOn
8 Nagayama, T. and Spencer Jr., B.F. (2007), Structural health monitoring using smart sensors, Newmark Structural Engineering Laboratory (NSEL) Report Series, No. 1, University of Illinois at Urbana-Champaign, Urbana, Illinois.
9 Park, J.H., Hong, D.S., Kim, J.T., Koo, K.Y., Yun, C.B. and Park, G. (2008), "Wireless sensing and embedded monitoring algorithm for damage diagnosis in PSC girders", Adv. Sci. Technol., 56, 420-425.   DOI
10 Rice, J.A. and Spencer, Jr., B.F. (2009), Flexible smart sensor framework for autonomous full-scale structural health monitoring, Newmark Structural Engineering Laboratory (NSEL) Report Series, No. 18, University of Illinois at Urbana-Champaign, Urbana, Illinois.
11 Sim, S., Spencer Jr. B., Zhang, M., Xie, H. (2010), "Automated decentralized modal analysis using smart sensors", Struct. Health Monit., 17(8), 872-894.   DOI   ScienceOn
12 STMicroelectronics LIS344ALH manual. Available online: http://www.st.com/internet/analog/product/207281.jsp
13 Cho, S., Lynch, J.P., Lee, J.J. and Yun, C.B. (2010), "Development of an automated wireless tension force estimation system for cable-stayed bridges", J. Intel. Mat. Syst. Str., 21, 361-376.   DOI   ScienceOn
14 Design, S. SD1221 Manual. Available online: http://www.silicondesigns.com/pdfs/1221.pdf
15 Gao, Y., Spencer Jr., B.F. and Ruiz-Sandoval, M. (2005), "Distributed computing strategy for structural health monitoring", Struct. Health Monit., 43(1), 488-507.
16 Hackmann, G., Sun, F., Castaneda, N., Lu, C. and Dyke, S. (2012), "A holistic approach to decentralized structural damage localization using wireless sensor networks", Comput Commun., 36(1), 29-41.   DOI   ScienceOn
17 Jo, H., Sim, S.H., Nagayama, T. and Spencer Jr, B. (2011), "Development and application of high sensitivity wireless smart sensors for decentralized stochastic modal identification", J. Eng. Mech. - ASCE, 138(6), 683-694.   DOI
18 Ho, D.D., Lee, P.Y., Nguyen, K.D., Hong, D.S., Lee, S.Y., Kim, J.T. and Shinozuka, M. (2012), "Solar-powered multi-scale sensor node on lmote 2 platform for hybrid SHM in cable-stayed bridge", Smart Struct. Syst., 9(2), 145-164.   DOI   ScienceOn
19 Juang, J.N. and Pappa, R.S. (1985), "An eigensystem realization algorithm for modal parameter identification and model reduction", J. Guid. Contr. Dynam., 8(5), 620-627.   DOI   ScienceOn
20 Jang, S., Sim, S.H., Jo, H. and Spencer, Jr., B.F. (2012), "Full-scale experimental validation of decentralized damage identification using wireless smart sensors," Smart Mater. Struct., 21(11), 115019.   DOI   ScienceOn