• Title/Summary/Keyword: Dead time control

Search Result 332, Processing Time 0.041 seconds

Identification of Three-Parameter Models from Step Response (스텝응답을 이용한 3매개변수 모델의 식별)

  • Ali, Mohammed Sowket;Lee, Jun-Sung;Lee, Young-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.12
    • /
    • pp.1189-1196
    • /
    • 2010
  • This paper provides an identification method for three-parameter models i.e. first order with dead time models and second order with dead time models. The proposed identification method is based on step response and can be easily implemented using digital microprocessors. The proposed method first identifies the order of the plant i.e. first order or second order from the behavior of the plant with constant input. After the order of the plant is determined, a test step input is applied to the system and the three parameters of the plant are obtained from the corresponding response of the plant. The output of the plant need not to be zero when the test signal is applied. The efficacy of proposed algorithms is verified through simulation and experiment.

New Dead Time Compensation Method in Voltage-Fed PWM Inverter (전압형 PWM 인버터에서의 새로운 데드 타임 보상 기법)

  • Ryu, Ho-Seon;Kim, Bong-Suck;Lee, Joo-Hyun;Lim, Ick-Hun;Hwang, Seon-Hwan;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.395-403
    • /
    • 2006
  • This paper has proposed a new dead time compensation method for a voltage-fed PMW inverter. In the voltage-fed PMW inverter, a voltage distortion is generated by the dead time effect and the nonlinear characteristics of the switching devices. Especially, the distorted voltage causes 5th and 7th harmonics in the stationary phase currents, and 6th harmonic in the synchronous phase currents. As a result, the integrator output of the synchronous PI current regulator has the ripple corresponding to six times of the inverter output frequency. In this paper, the signal of the integrator output of the d-axis current regulator is used as the control signal for the dead time compensation. The experimental and simulation results are presented to verify the validity of the proposed method.

Novel Model Predictive Control Method to Eliminate Common-mode Voltage for Three-level T-type Inverters Considering Dead-time Effects

  • Wang, Xiaodong;Zou, Jianxiao;Dong, Zhenhua;Xie, Chuan;Li, Kai;Guerrero, Josep M.
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1458-1469
    • /
    • 2018
  • This paper proposes a novel common-mode voltage (CMV) elimination (CMV-EL) method based on model predictive control (MPC) to eliminate CMV for three-level T-type inverters (3LT2Is). In the proposed MPC method, only six medium and one zero voltage vectors (VVs) (6MV1Z) that generate zero CMV are considered as candidates to perform the MPC. Moreover, the influence of dead-time effects on the CMV of the MPC-based 6MV1Z method is investigated, and the candidate VVs are redesigned by pre-excluding the VVs that will cause CMV fluctuations during the dead time from 6MV1Z. Only three or five VVs are included to perform optimization in every control period, which can significantly reduce the computational complexity. Thus, a small control period can be implemented in the practical applications to achieve improved grid current performance. With the proposed CMV-EL method, the CMV of the $3LT^2Is$ can be effectively eliminated. In addition, the proposed CMV-EL method can balance the neutral point potentials (NPPs) and yield satisfactory performance for grid current tracking in steady and dynamic states. Simulation and experimental results are presented to verify the effectiveness of the proposed method.

Internal-External Error Controller Design for Position Control of Vehicle (운반체의 위치제어를 위한 내부.외부오차 제어기 설계)

  • Chung, Yong-Oug;Park, Chong-Kug
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.12
    • /
    • pp.1213-1221
    • /
    • 2007
  • In most case of previous research about vehicle control system, external error occurred by unexpected environmental situation was hardly considered. However, in this paper, to have more accurate position control of differential derive vehicle, we separate the error as an internal error and external error. To calculate the vehicle position in real time, we introduced the Dead-Reckoning algorithms and the simulation result show that the proposed internal and external error control system has fast and accurate position tracking with remarkable diminishment of orientation error. The results reported here can easily be extended to the control of similar type vehicle.

A Study on the Auto-Reclose Dead lime Control using Neural Network based On-line Transient Stability Assessment (신경회로망을 이용한 On-line 과도안정도 평가에 의한 자동재폐로 무전압 시간제어 연구)

  • Kim, Il-Dong;Park, Jong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.131-136
    • /
    • 1995
  • This paper presents a functional ability improvement of auto-reclosing relay in the power transmission line protection. When the high speed auto-reclosing is successful, Auto-reclosing is practically valuable to improve the transient stability limit of a power system, but it is fail due to surviving fault, both electrical and mechanical stresses can result on the transformers and turbine-generator. It is true that the longer dead time of the reclosing relay gives the higher rate of successful reclosing, On the other hand, the power system does not always need high speed reclosing because of enough stability margin. This paper proposed "stability margin based dead time reclosing" in order to decrease not only the rate of unsuccessful reclosing, but the possibility of the harmful stress also. On-line transient stability assessment using artificial neural network, for implementing the proposed scheme, has studied and tested with resonable results.

  • PDF

Robust Adaptive Control of Hydraulic Positioning System Considering Frequency Domain Performance (주파수역 성능을 고려한 유압 위치시스템의 강인 적응 제어)

  • Kim, Ki-Bum;Kim, In-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.157-163
    • /
    • 2014
  • In this paper, a robust MRAC (model reference adaptive control) scheme is applied to control an electrohydraulic positioning system under various loads. The inverse dead-zone compensator in the control system cancels out the dead-zone response, and an integrator added to the controller provides good position-tracking ability. LQG/LTR (linear quadratic Gaussian control with loop transfer recovery) closed-loop model is used as the reference model for learning the MRAC system. LQG/LTR provides a systematic technique to design the linear controller that optimizes the objective function using some compromise between the control effort and the system performance in the frequency domain. Different external load tests are performed to investigate the effectiveness of the designed MRAC system in real time. The experimental results show that the tracking performance of the proposed system is highly accurate, which offers considerable robustness even with a large change in the load.

On-line robust control of a system with dead time

  • Wu, Wen-Teng;Jang, Yu-Jen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.902-906
    • /
    • 1990
  • On-line robust control based on a stability index for time-delay systems has been developed. The purpose of the proposed design algorithm is to on-line tune a filter in the control loop. The problem of robust control with an incorrect given bound on the modeling error is investigated. Illustrative examples are presented to show the promise of the proposed method.

  • PDF

The Arcing Faults Simulation and Adaptive Autoreclosure Strategy for 765 kV Transmission Line Protection (765 kV 송전선로 보호를 위한 아크사고 시뮬레이션 및 적응적 자동재폐로 대책)

  • Ahn, Sang-Pil;Kim, Chull-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.11
    • /
    • pp.1365-1373
    • /
    • 1999
  • In many countries including Korea, in order to transmit the more electric power, the higher transmission line voltage is inevitable. So, a rapid reclosing scheme is important for EHV/UHV transmission lines to ensure requirements for high reliability of main lines. A critical aspect of reclosing operation is the extinction of the secondary arc since it must extinguish before successful reclosure can occur. Therefore the accurate simulation techniques of arcing faults are of importance. And successful reclosing switching can be accomplished by adopting a proper method such as HSGS and hybrid scheme to reduce the secondary arc extinction time. First of all, this paper discusses a suggested arc model, which have time dependent resistance for primary arc and piecewise linear approximated arc model for secondary arc. And this simulation technique is applied to Korean 765 kV transmission lines. Also hybrid scheme is simulated and evaluated for the purpose of shortening dead time. For adaptive reclosing scheme, variable dead time control algorithm is suggested. Two kinds of algorithm are tested. One is max tracking algorithm and the other is rms tracking algorithm. According to simulation results, rms tracking has less errors than max tracking. Therefore rms tracking is applied to Korean 765 kV transmission lines with hybrid scheme.

  • PDF

A robust design method for a long dead time system with an intergral mode

  • Ma, Jin-suk;Kim, sun-ja;Kwon, woo-hyen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.59.5-59
    • /
    • 2002
  • In this paper, we present a robust controller design method that can not only deal with the constant time delay plant but also an uncertain time delay one. For a constant time delay plant. The proposed DTC can independently adjust the set response and the disturbance response without any stability constraint. And in the uncertain time delay case, one can process the control design step with uncertainty norm bound. To verify real effectiveness, theoretical analysis and simulation results are given.

  • PDF

Improvement of the Response Characteristics Using the Fuzzy-PLL Controller (퍼지-PLL 제어기를 이용한 응답특성 개선)

  • Cho, Jeong-Hwan;Seo, Choon-Weon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.1
    • /
    • pp.175-181
    • /
    • 2005
  • This paper proposes the fuzzy-PLL control system for fast response time and precision control of automation systems. The conventional PLL has not only a jitter noise caused from such a demerit of the wide dead zone, but also a long delay interval that makes a high speed operation unable. In order to solve the problems, the proposed system, which provides the improvement in terms of the control region in high speed and precision control, first used the fuzzy control method for fast response time and when the error reaches the preset value, used the PLL method designing new PFD for precision control. The new designed multi-PFD improves the dead zone, jitter noise and response characteristics, which is consists of P-PFD(Positive edge triggered PFD) and N-PFD(Negative edge triggered PFD) and can improve response characteristics to increase PFD gain.