DOI QR코드

DOI QR Code

Novel Model Predictive Control Method to Eliminate Common-mode Voltage for Three-level T-type Inverters Considering Dead-time Effects

  • Wang, Xiaodong (School of Automation Engineering, University of Electronic Science and Technology of China) ;
  • Zou, Jianxiao (School of Automation Engineering, University of Electronic Science and Technology of China) ;
  • Dong, Zhenhua (School of Automation Engineering, University of Electronic Science and Technology of China) ;
  • Xie, Chuan (School of Automation Engineering, University of Electronic Science and Technology of China) ;
  • Li, Kai (School of Automation Engineering, University of Electronic Science and Technology of China) ;
  • Guerrero, Josep M. (Department of Energy Technology, Aalborg University)
  • Received : 2018.01.10
  • Accepted : 2018.05.03
  • Published : 2018.09.20

Abstract

This paper proposes a novel common-mode voltage (CMV) elimination (CMV-EL) method based on model predictive control (MPC) to eliminate CMV for three-level T-type inverters (3LT2Is). In the proposed MPC method, only six medium and one zero voltage vectors (VVs) (6MV1Z) that generate zero CMV are considered as candidates to perform the MPC. Moreover, the influence of dead-time effects on the CMV of the MPC-based 6MV1Z method is investigated, and the candidate VVs are redesigned by pre-excluding the VVs that will cause CMV fluctuations during the dead time from 6MV1Z. Only three or five VVs are included to perform optimization in every control period, which can significantly reduce the computational complexity. Thus, a small control period can be implemented in the practical applications to achieve improved grid current performance. With the proposed CMV-EL method, the CMV of the $3LT^2Is$ can be effectively eliminated. In addition, the proposed CMV-EL method can balance the neutral point potentials (NPPs) and yield satisfactory performance for grid current tracking in steady and dynamic states. Simulation and experimental results are presented to verify the effectiveness of the proposed method.

Keywords

References

  1. A. Nabae, I. Takahashi, and H. Akagi, "A new neutral-point-clamped PWM inverter," IEEE Trans. Ind Appl., Vol. IA-17, No. 5, pp. 518-523, Sep./Oct. 1981. https://doi.org/10.1109/TIA.1981.4503992
  2. M. Schweizer and J. W. Kolar, “Design and implementation of a highly efficient three-level T-type converter for low-voltage applications,” IEEE Trans. Power Electron., Vol. 28, No. 2, pp. 899-907, Feb. 2013. https://doi.org/10.1109/TPEL.2012.2203151
  3. U. M. Choi, F. Blaabjerg, and K. B. Lee, “Reliability improvement of a T-Type three-level inverter with fault-tolerant control strategy,” IEEE Trans. Power Electron., Vol. 30, No. 5, pp. 2660-2673, May 2015. https://doi.org/10.1109/TPEL.2014.2325891
  4. R. Teichmann and S. Bernet, “A comparison of three-level converters versus two-level converters for low-voltage drives traction and utility applications,” IEEE Trans. Ind. Appl., Vol. 41, No. 3, pp. 855-865, May/Jun. 2005. https://doi.org/10.1109/TIA.2005.847285
  5. Y. Atia and M. Salem, "Microcontroller-based improved predictive current controlled VSI for single-phase grid-connected systems," J. Power Electron., Vol. 13, No. 6, pp. 1016-1023, Nov. 2013. https://doi.org/10.6113/JPE.2013.13.6.1016
  6. M. P. Kazmierkowski, R. Krishnan, and F. Blaabjerg, Control in Power Electronics. New York, NY, USA: Academic, 2002.
  7. C. Xie, X. Zhao, K. Li, J. Zou, and J. M. Guerrero, "A new tuning method of multi-resonant current controllers for grid-connected voltage source converters," IEEE J. Emerg. Sel. Top. Power Electron., to be published. DOI: 10.1109/JESTPE.2018.2833806
  8. J. M. Erdman, R. J. Kerkman, D. W. Schlegel, and G. L. Skibinski, “Effect of PWM inverters on AC motor bearing currents and shaft voltages,” IEEE Trans. Ind. Appl., Vol. 32, No. 2, pp. 250-259, Feb. 1996. https://doi.org/10.1109/28.491472
  9. J. D. Barros, J. F. A. Silva, and E. G. A. Jesus, "Fast-predictive optimal control of NPC multilevel converters," IEEE Trans. Ind. Electron., Vol. 60, No. 2, pp. 619-627, Feb. 2013. https://doi.org/10.1109/TIE.2012.2206352
  10. S. Kwak and J. C. Park, “Predictive control method with future zero-sequence voltage to reduce switching losses in Three-Phase voltage source inverters,” IEEE Trans. Power Electron., Vol. 30, No. 3, pp. 1558-1566, Mar. 2015. https://doi.org/10.1109/TPEL.2014.2304719
  11. J. Rodriguez, J. Pontt, C. A. Silva, P. Correa, P. Lezana, P. Cortes, and U. Ammann, "Switching strategy based on model predictive control of VSI to obtain high efficiency and balanced loss distribution," IEEE Trans. Power Electron., Vol. 29, No. 9, pp. 4551-4567, Sep. 2014. https://doi.org/10.1109/TPEL.2013.2286407
  12. J. M. Erdman, R. J. Kerkman, D. W. Schlegel, and G. L. Skibinski, “Effect of PWM inverters on AC motor bearing currents and shaft voltages,” IEEE Trans. Ind. Appl., Vol. 32, No. 2, pp. 250-259, Mar./Apr. 1996. https://doi.org/10.1109/28.491472
  13. M. J. Duran, J. A. Riveros, F. Barrero, H. Guzman, and J. Prieto, “Reduction of common-mode voltage in five-phase induction motor drives using predictive control techniques,” IEEE Trans. Ind Appl., Vol. 48, No. 6, pp. 2059-2067, Nov./Dec. 2012. https://doi.org/10.1109/TIA.2012.2226221
  14. M. C. Cavalcanti, A. M. Farias, K. C. Oliveira, F. A. S. Neves, and J. L. Afonso, “Eliminating leakage currents in neutral point clamped inverters for photovoltaic systems,” IEEE Trans. Ind. Electron., Vol. 59, No. 1, pp. 435-443, Jan. 2012. https://doi.org/10.1109/TIE.2011.2138671
  15. X. Wang, J. Zou, L. Ma, J. Zhao, C. Xie, K. Li, L. Meng, and J. M. Guerrero, “Model predictive control methods of leakage current elimination for a three-level T-type transformerless PV inverter,” IET Power Electron., Vol. 11, No. 8, pp. 1492-1498, Jul. 2018. https://doi.org/10.1049/iet-pel.2017.0762
  16. R. M. Tallam, R. J. Kerkman, D. Leggate, and R. A. Lukaszewski, “Common-mode voltage reduction PWM method for AC Drives,” IEEE Trans. Ind. Appl., Vol. 46, No. 5, pp. 1959-1969, Sep./Oct. 2010. https://doi.org/10.1109/TIA.2010.2057396
  17. J. W. Kimball and M. Zawodniok, “Reducing common-mode voltage in three-phase sine-triangle PWM with interleaved carriers,” IEEE Trans. Power Electron., Vol. 26, No. 8, pp. 2229-2236, Aug. 2011. https://doi.org/10.1109/TPEL.2010.2092791
  18. M. C. Cavalcanti, K. C. de Oliveira, A. M. de Farias, F. A. S. Neves, G. M. S. Azevedo, and F. C. Camboim, “Modulation techniques to eliminate leakage currents in transformerless three-phase photovoltaic systems,” IEEE Trans. Ind. Electron., Vol. 57, No. 4, pp. 1360-1368, Apr. 2010. https://doi.org/10.1109/TIE.2009.2029511
  19. X. Wu, G. Tan, Z. Ye, Y. Liu, and S. Xu, “Optimized common-mode voltage reduction PWM for three-phase voltage source inverters,” IEEE Trans. Power Electron., Vol. 31, No. 4, pp. 2959-2969, Apr. 2016. https://doi.org/10.1109/TPEL.2015.2451673
  20. L. Kai, J. Zhao, W. Wu, M. Li, L. Ma, and G. Zhang, “Performance analysis of zero common-mode voltage pulse-width modulation techniques for three-level neutral point clamped inverters,” IET Power Electron., Vol. 9, No. 14, pp. 2654-2664, Nov. 2016. https://doi.org/10.1049/iet-pel.2016.0009
  21. S. Mun and S. Kwak, “Reducing common-mode voltage of three-phase VSIs using the predictive current control method based on reference voltage,” J. Power Electron., Vol. 15, No. 3, pp. 712-720, May 2015. https://doi.org/10.6113/JPE.2015.15.3.712
  22. S. Kwak and S. Mun, “Model predictive control methods to reduce common-mode voltage for three-phase voltage source inverters,” IEEE Trans. Power Electron., Vol. 30, No. 9, pp. 5019-5035, Sep. 2015. https://doi.org/10.1109/TPEL.2014.2362762
  23. S. Kwak and J. Park, “Model predictive direct power control with vector preselection technique for highly efficient active rectifiers,” IEEE Trans. Ind. Informat, Vol. 11, No. 1, pp. 44-52, Feb. 2015. https://doi.org/10.1109/TII.2014.2363761
  24. L. Guo, X. Zhang, S. Yang, Z. Xie, and R. Cao, “A model predictive control-based common-mode voltage suppression strategy for voltage-source inverter,” IEEE Trans. Ind. Electron., Vol. 63, No. 10, pp. 6115-6125, Oct. 2016. https://doi.org/10.1109/TIE.2016.2574980
  25. S. Kwak and S. Mun, “Common-mode voltage mitigation with a predictive control method considering dead time effects of three-phase voltage source inverters,” IET Power Electron., Vol. 8, No. 9, pp. 1690-1700, Sep. 2015. https://doi.org/10.1049/iet-pel.2014.0884
  26. X. Xing, A. Chen, Z. Zhang, J. Chen, and C. Zhang, "Model predictive control method to reduce common-mode voltage and balance the neutral-point voltage in three-level T-type inverter," 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 3453-3458, 2016.
  27. E. A. Kumar, K. C. Sekhar, and R. S. Rao, "Model predictive current control of a three-phase T-type NPC inverter to reduce common mode voltage," J. Circuits, Syst. Comp., Vol. 27, No. 2, Feb. 2018.
  28. X. Wang, J. Zou, J. Zhao, Z. Dong, M. Wei, C. Xie, and K. Li, "Common-mode voltage elimination of three-level T-type inverters with a finite control set model predictive control method," 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 992-997, 2018.
  29. S. Kouro, P. Cortes, R. Vargas, U. Ammann, and J. Rodriguez, "Model predictive control - A simple and powerful method to control power converters," IEEE Trans. Ind. Electron., Vol. 56, No. 6, pp. 1826-1838, Jun. 2009. https://doi.org/10.1109/TIE.2008.2008349
  30. P. Cortes, J. Rodriguez, C. Silva, and A. Flores, "Delay compensation in model predictive current control of a three-phase inverter," IEEE Trans. Ind. Electron., Vol. 59, No. 2, pp. 1323-1325, Feb. 2012. https://doi.org/10.1109/TIE.2011.2157284