• Title/Summary/Keyword: Data-driven prediction

Search Result 192, Processing Time 0.026 seconds

A New Prediction-Based Parallel Event-Driven Logic Simulation (새로운 예측기반 병렬 이벤트구동 로직 시뮬레이션)

  • Yang, Seiyang
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.3
    • /
    • pp.85-90
    • /
    • 2015
  • In this paper, anew parallel event-driven logic simulation is proposed. As the proposed prediction-based parallel event-driven simulation method uses both prediction data and actual data for the input and output values of local simulations executed in parallel, the synchronization overhead and the communication overhead, the major bottleneck of the performance improvement, are greatly reduced. Through the experimentation with multiple designs, we have observed the effectiveness of the proposed approach.

Data-Driven Approach for Lithium-Ion Battery Remaining Useful Life Prediction: A Literature Review

  • Luon Tran Van;Lam Tran Ha;Deokjai Choi
    • Smart Media Journal
    • /
    • v.11 no.11
    • /
    • pp.63-74
    • /
    • 2022
  • Nowadays, lithium-ion battery has become more popular around the world. Knowing when batteries reach their end of life (EOL) is crucial. Accurately predicting the remaining useful life (RUL) of lithium-ion batteries is needed for battery health management systems and to avoid unexpected accidents. It gives information about the battery status and when we should replace the battery. With the rapid growth of machine learning and deep learning, data-driven approaches are proposed to address this problem. Extracting aging information from battery charge/discharge records, including voltage, current, and temperature, can determine the battery state and predict battery RUL. In this work, we first outlined the charging and discharging processes of lithium-ion batteries. We then summarize the proposed techniques and achievements in all published data-driven RUL prediction studies. From that, we give a discussion about the accomplishments and remaining works with the corresponding challenges in order to provide a direction for further research in this area.

Crack growth prediction on a concrete structure using deep ConvLSTM

  • Man-Sung Kang;Yun-Kyu An
    • Smart Structures and Systems
    • /
    • v.33 no.4
    • /
    • pp.301-311
    • /
    • 2024
  • This paper proposes a deep convolutional long short-term memory (ConvLSTM)-based crack growth prediction technique for predictive maintenance of structures. Since cracks are one of the critical damage types in a structure, their regular inspection has been mandatory for structural safety and serviceability. To effectively establish the structural maintenance plan using the inspection results, crack propagation or growth prediction is essential. However, conventional crack prediction techniques based on mathematical models are not typically suitable for tracking complex nonlinear crack propagation mechanism on civil structures under harsh environmental conditions. To address the technical issue, a field data-driven crack growth prediction technique using ConvLSTM is newly proposed in this study. The proposed technique consists of the four steps: (1) time-series crack image acquisition, (2) target image stabilization, (3) deep learning-based crack detection and quantification and (4) crack growth prediction. The performance of the proposed technique is experimentally validated using a concrete mock-up specimen by applying step-wise bending loads to generate crack growth. The validation test results reveal the prediction accuracy of 94% on average compared with the ground truth obtained by field measurement.

A Review on Performance Prediction of Marine Fuel Cells (선박용 연료전지 성능 예측 방법에 관한 고찰)

  • EUNJOO PARK;JINKWANG LEE
    • Journal of Hydrogen and New Energy
    • /
    • v.35 no.4
    • /
    • pp.437-450
    • /
    • 2024
  • Sustainable shipping depends on eco-friendly energy solutions. This paper reviews methods for predicting marine fuel cell performance, including empirical approaches, physical modeling, data-driven techniques, and hybrid methods. Accurate prediction models tailored to the marine environment's unique conditions are crucial for operational efficiency. By evaluating the strengths and weaknesses of each method, this study provides a comprehensive analysis of effective strategies for forecasting polymer electrolyte membrane fuel cell and solid oxide fuel cell performance in marine applications. These insights contribute to the advancement of eco-friendly shipping technologies and enhance fuel cell performance in challenging marine environments.

Evaluation of Nonlinear κ-ε Models on Prediction Performance of Turbulence-Driven Secondary Flows (난류에 의해 야기되는 이차유동 예측성능에 대한 비선형 κ-ε 난류모델의 평가)

  • Myong, Hyon-Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1150-1157
    • /
    • 2003
  • Nonlinear relationship between Reynolds stresses and the rate of strain of nonlinear k-$\varepsilon$models is evaluated theoretically by using the boundary layer assumptions against the turbulence-driven secondary flows in noncircular ducts and then their prediction performance is validated numerically through the application to the fully developed turbulent flow in a square duct. Typical predicted quantities such as mean axial and secondary velocities, turbulent kinetic energy and Reynolds stresses are compared with available experimental data. The nonlinear k-$\varepsilon$ model adopted in a commercial code is found to be unable to predict accurately duct flows with the prediction level of secondary flows one order less than that of the experiment.

Efficient of The Data Value Predictor in Superscalar Processors (슈퍼스칼라 프로세서에서 데이터 값 예측기의 성능효과)

  • 박희룡;전병찬;이상정
    • Proceedings of the IEEK Conference
    • /
    • 2000.06c
    • /
    • pp.55-58
    • /
    • 2000
  • To achieve high performance by exploiting instruction level parallelism(ILP) aggressively in superscalar processors, value prediction is used. Value prediction is a technique that breaks data dependences by predicting the outcome of an instruction and executes speculatively it's data dependent instruction based on the predicted outcome. In this paper, the performance of a hybrid value prediction scheme with dynamic classification mechanism is measured and analyzed by using execution-driven simulator for SPECint95 benchmark set.

  • PDF

Failure prediction of a motor-driven gearbox in a pulverizer under external noise and disturbance

  • Park, Jungho;Jeon, Byungjoo;Park, Jongmin;Cui, Jinshi;Kim, Myungyon;Youn, Byeng D.
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.185-192
    • /
    • 2018
  • Participants in the Asia Pacific Conference of the Prognostics and Health Management Society 2017 (PHMAP 2017) Data Challenge were given measured vibration signals from motor-driven gearboxes used in pulverizers. Using this information, participants were requested to predict failure dates and the faulty components. The measured signals were affected by significant noise and disturbance, as the pulverizers in the provided data worked under actual operating conditions. This paper thus presents a fault prediction method for a motor-driven gearbox in a pulverizer system that can perform under external noise and disturbance conditions. First, two fault features, an RMS value in the higher frequency zones (HRMS) and an amplitude of a period for high-speed shaft in the quefrency domain ($QA_{HSS}$), were extracted based on frequency analysis using the higher and lower sampling rate data. The two features were then applied to each pulverizer based on results of frequency responses to impact loadings. Then, a regression analysis was used to predict the failure date using the two extracted features. A weighted regression analysis was used to compensate for the imbalance of the features in the given period. In addition, the faulty components in the motor-driven gearboxes were predicted based on the modulated frequency components. The score predicted by the proposed approach was ranked first in the PHMAP 2017 Data Challenge.

Data-driven SIRMs-connected FIS for prediction of external tendon stress

  • Lau, See Hung;Ng, Chee Khoon;Tay, Kai Meng
    • Computers and Concrete
    • /
    • v.15 no.1
    • /
    • pp.55-71
    • /
    • 2015
  • This paper presents a novel harmony search (HS)-based data-driven single input rule modules (SIRMs)-connected fuzzy inference system (FIS) for the prediction of stress in externally prestressed tendon. The proposed method attempts to extract causal relationship of a system from an input-output pairs of data even without knowing the complete physical knowledge of the system. The monotonicity property is then exploited as an additional qualitative information to obtain a meaningful SIRMs-connected FIS model. This method is then validated using results from test data of the literature. Several parameters, such as initial tendon depth to beam ratio; deviators spacing to the initial tendon depth ratio; and distance of a concentrated load from the nearest support to the effective beam span are considered. A computer simulation for estimating the stress increase in externally prestressed tendon, ${\Delta}f_{ps}$, is then reported. The contributions of this paper is two folds; (i) it contributes towards a new monotonicity-preserving data-driven FIS model in fuzzy modeling and (ii) it provides a novel solution for estimating the ${\Delta}f_{ps}$ even without a complete physical knowledge of unbonded tendons.

Bayesian forecasting approach for structure response prediction and load effect separation of a revolving auditorium

  • Ma, Zhi;Yun, Chung-Bang;Shen, Yan-Bin;Yu, Feng;Wan, Hua-Ping;Luo, Yao-Zhi
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.507-524
    • /
    • 2019
  • A Bayesian dynamic linear model (BDLM) is presented for a data-driven analysis for response prediction and load effect separation of a revolving auditorium structure, where the main loads are self-weight and dead loads, temperature load, and audience load. Analyses are carried out based on the long-term monitoring data for static strains on several key members of the structure. Three improvements are introduced to the ordinary regression BDLM, which are a classificatory regression term to address the temporary audience load effect, improved inference for the variance of observation noise to be updated continuously, and component discount factors for effective load effect separation. The effects of those improvements are evaluated regarding the root mean square errors, standard deviations, and 95% confidence intervals of the predictions. Bayes factors are used for evaluating the probability distributions of the predictions, which are essential to structural condition assessments, such as outlier identification and reliability analysis. The performance of the present BDLM has been successfully verified based on the simulated data and the real data obtained from the structural health monitoring system installed on the revolving structure.

Performance Improvement of Prediction-Based Parallel Gate-Level Timing Simulation Using Prediction Accuracy Enhancement Strategy (예측정확도 향상 전략을 통한 예측기반 병렬 게이트수준 타이밍 시뮬레이션의 성능 개선)

  • Yang, Seiyang
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.12
    • /
    • pp.439-446
    • /
    • 2016
  • In this paper, an efficient prediction accuracy enhancement strategy is proposed for improving the performance of the prediction-based parallel event-driven gate-level timing simulation. The proposed new strategy adopts the static double prediction and the dynamic prediction for input and output values of local simulations. The double prediction utilizes another static prediction data for the secondary prediction once the first prediction fails, and the dynamic prediction tries to use the on-going simulation result accumulated dynamically during the actual parallel simulation execution as prediction data. Therefore, the communication overhead and synchronization overhead, which are the main bottleneck of parallel simulation, are maximally reduced. Throughout the proposed two prediction enhancement techniques, we have observed about 5x simulation performance improvement over the commercial parallel multi-core simulation for six test designs.