• Title/Summary/Keyword: Data Redundancy

Search Result 361, Processing Time 0.038 seconds

A Study on the Composition of Compact Code using Octal-Compact Mapping Technique (OCM방법을 이용한 Compact Code의 구성에 관한 연구)

  • 김경태;민용식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.9 no.3
    • /
    • pp.103-107
    • /
    • 1984
  • According to rapid developments in data communication, we have being used every infromation with ease. In receiving and transmitting the infromation acquired, it is being needed to transmit it with minimizing bits if possible. Therefore this paper suggests the efficient coding system, that is, OCM(Octal-Compact Mapping) technique. In case of average-case, it has 3.5bytes in entropy with 8 symbols. This means it is compressed more than at least 1 byte as compared with another coding techniques. It decreases the redundancy of data and is superior to another data compression techniques.

  • PDF

Example Guided Inverse Kinematics (측정 데이타에 기반한 향상된 역 운동학)

  • Tak, Se-Yun;Go, Hyeong-Seok
    • Journal of the Korea Computer Graphics Society
    • /
    • v.5 no.1
    • /
    • pp.11-17
    • /
    • 1999
  • This paper proposes example guided inverse kinematics (EGIK) which extends and enhances existing inverse kinematics technique. In conventional inverse kinematics, redundancy in the model produces an infinite number of solutions. The motion could be jerky depending on the choice of solutions at each frame. EGIK exploits the redundancy for imitating an example motion (a premeasured motion data) so that a unique solution is chosen. To minimize the gap between the goal and current end-effector position and imitate the original motion at the same time, nonlinear optimization technique is employed. So, the resulting motion resembles the original one in an optimal sense. Experiments prove that the method is a robust and effective technique to animate high DOF articulated models from an example motion.

  • PDF

Packet switched WDM backbone network designing regarding detour route (대체 경로를 고려한 패킷교환 방식의 WOM 기간망 설계ml 대한 연구)

  • 이순화;김경민;김장복
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.247-250
    • /
    • 2002
  • It is predicted that the existing backbone network has encountered its limit due to massive growth in data traffic. Perhaps new WDM methods utilizing optical fibers are desirable. Also to assure reliance of the network detour routes fur collision recovery must be considered. But due to the redundancy occurred by allocating bandwidths to the detour route, the efficiency of the link my decline. In this paper, we designed a detour route to minimize the redundancy.

  • PDF

Kinematic/Inverse Kinematic Analysis of Captive Trajectory Simulation System with Functional Redundancy (기능적 여유자유도를 가지는 CTS 시스템의 기구학/역기구학 해석)

  • Lee, Do Kwan;Lee, Sang Jeong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.3
    • /
    • pp.263-271
    • /
    • 2017
  • A captive trajectory simulation (CTS) system is used to investigate the separation behavior of the store model by moving the model to an arbitrary pose and position based on aerodynamic data. A CTS system operated inside a wind tunnel is designed to match the structure of the wind tunnel facility. As a result, each CTS system has different kinematic structure, and inverse kinematic analysis of the system is necessary. In this study, kinematic/inverse kinematic analysis for the CTS system with functional redundancy is performed. Inverse kinematic analysis with combined numerical and analytical approach is especially proposed. The suggested approach utilizes the redundancy to improve the safety of the system, and has advantages in real time analysis.

Self-Localized Packet Forwarding in Wireless Sensor Networks

  • Dubey, Tarun;Sahu, O.P.
    • Journal of Information Processing Systems
    • /
    • v.9 no.3
    • /
    • pp.477-488
    • /
    • 2013
  • Wireless Sensor Networks (WSNs) are comprised of sensor nodes that forward data in the shape of packets inside a network. Proficient packet forwarding is a prerequisite in sensor networks since many tasks in the network, together with redundancy evaluation and localization, depend upon the methods of packet forwarding. With the motivation to develop a fault tolerant packet forwarding scheme a Self-Localized Packet Forwarding Algorithm (SLPFA) to control redundancy in WSNs is proposed in this paper. The proposed algorithm infuses the aspects of the gossip protocol for forwarding packets and the end to end performance of the proposed algorithm is evaluated for different values of node densities in the same deployment area by means of simulations.

A PROPOSED HIGH AVAILABILITY ARCHITECTURE FOR COMS GROUND CONTROL SYSTEM

  • Kim In-Jun;Kim Jae-Hoon
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.266-269
    • /
    • 2004
  • A satellite ground control system (SGCS) which monitors and controls a geostationary satellite 24 hours a day has to achieve the system architecture assuring high-level availability and redundancy scheme. The SGCS for Communication, Ocean, and Meteorological Satellite (COMS) is currently being developed in Korea, which will be implemented to satisfy high availability (HA), expansibility, and compatibility in design. In order to implement the system architecture to meet these characteristics, the SGCS for COMS introduces the concept of the real-time distributed system structure based on redundancy scheme for high availability, data replication and sharing, and CORBA middleware.

  • PDF

Reliability-aware service chaining mapping in NFV-enabled networks

  • Liu, Yicen;Lu, Yu;Qiao, Wenxin;Chen, Xingkai
    • ETRI Journal
    • /
    • v.41 no.2
    • /
    • pp.207-223
    • /
    • 2019
  • Network function virtualization can significantly improve the flexibility and effectiveness of network appliances via a mapping process called service function chaining. However, the failure of any single virtualized network function causes the breakdown of the entire chain, which results in resource wastage, delays, and significant data loss. Redundancy can be used to protect network appliances; however, when failures occur, it may significantly degrade network efficiency. In addition, it is difficult to efficiently map the primary and backups to optimize the management cost and service reliability without violating the capacity, delay, and reliability constraints, which is referred to as the reliability-aware service chaining mapping problem. In this paper, a mixed integer linear programming formulation is provided to address this problem along with a novel online algorithm that adopts the joint protection redundancy model and novel backup selection scheme. The results show that the proposed algorithm can significantly improve the request acceptance ratio and reduce the consumption of physical resources compared to existing backup algorithms.

Implementation of Parallel Cyclic Redundancy Check Code Encoder and Syndrome Calculator (병렬 CRC코드 생성기 및 Syndrome 계산기의 구현)

  • 김영섭;최송인;박홍식;김재균
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.1
    • /
    • pp.83-91
    • /
    • 1993
  • In the digital transmission system, cyclic redundancy check(CRC) code is widely used because it is easy to be implemented and has good performance in error detection. CRC code generator consists of several shift registers and modulo 2 adders. After manipulation of input data stream in the encoder, the remaining value of shift registers becomes CRC code. At the receiving side, error can be detected and corrected by CRC codes immediately transmitted after data stream. But, in the high speed system such as an A TM switch, it is difficult to implement the serial CRC encoder because of speed limitation of available semiconductor devices. In this paper, we propose the efficient parallel CRC encoder and syndrome calculator to solve the speed problem in implementing these functions using the existing semiconductor technology.

  • PDF

IR-RBT Codes: A New Scheme of Regenerating Codes for Tolerating Node and Intra-node Failures in Distributed Storage Systems

  • Bian, Jianchao;Luo, Shoushan;Li, Wei;Zha, Yaxing;Yang, Yixian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.5058-5077
    • /
    • 2019
  • Traditional regenerating codes are designed to tolerate node failures with optimal bandwidth overhead. However, there are many types of partial failures inside the node, such as latent sector failures. Recently, proposed regenerating codes can also repair intra-node failures with node-level redundancy but incur significant bandwidth and I/O overhead. In this paper, we construct a new scheme of regenerating codes, called IR-RBT codes, which employs intra-node redundancy to tolerate intra-node failures and serve as the help data for other nodes during the repair operation. We propose 2 algorithms for assigning the intra-node redundancy and RBT-Helpers according to the failure probability of each node, which can flexibly adjust the helping relationship between nodes to address changes in the actual situation. We demonstrate that the IR-RBT codes improve the bandwidth and I/O efficiency during intra-node failure repair over traditional regenerating codes but sacrifice the storage efficiency.

A study on the advanced RFID system using the parallel cyclic redundancy check (병렬 순환 잉여 검사를 이용한 발전된 무선인식 시스템에 관한 연구)

  • Kang Tai-Kyu;Yoon Sang-Mun;Shin Seok-kyun;Kang Min-Soo;Lee Key-Sea
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1235-1240
    • /
    • 2004
  • This paper has presented the parallel cyclic redundancy check (CRC) technique that performs CRC computation in parallel superior to the conventional CRC technique that processes data bits serially. Also, it has showed that the implemented parallel CRC circuit had been successfully applied to the inductively coupled passive RFID system working at a frequency of 13.56MHz in order to process the detection of logical faults more fast and the system had been verified experimentally. In comparison with previous works, the proposed RFID system using the parallel CRC technique has been shown to reduce the latency and increase the data processing rates in the results. Therefore, it seems reasonable to conclude that the parallel CRC realization in the RFID system offers a means of maintaining the integrity of data in the high speed RFID system.

  • PDF