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Abstract

This paper proposes example guided inverse kinematics (EGIK)
which extends and enhances existing inverse kinematics tech-
nique. In conventional inverse kinematics, redundancy in the
model produces an infinite number of solutions. The motion could
be jerky depending on the choice of solutions at each frame. EGIK
exploits the redundancy for imitating an example motion (a pre-
measured motion data) so that a unique solution is chosen. To
minimize the gap between the goal and current end-effector po-
sition and imitate the original motion at the same time, nonlinear
optirnization technique is employed. So, the resulting motion re-
sembles the original one in an optimal sense. Experiments prove
that the method is a robust and effective technique to animate high
DOF articulated models from an example motion.
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A 1A Introduction

Animating human motion has been a great challenge. The task
may appear easy at the first look since we can completely com-
mand an articulated figure by supplying joint angles. However,
the difficulty stems from the fact that there are too many things
to control. Human body has 206 bones and hundreds of muscles.
A reasonable model of it can easily have 40 degrees of freedom.
Computing such number of joint angles so that the resulting mo-
tion resembles that of a real human is not a trivial task. Among
diverse approaches to solve this problem, inverse kinematics and
motion capture are just two. The algorithm proposed in this paper
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is about the half way between these two approaches.

Inverse kinematics was originated from robotics field [2]. It
computes joint angles that position the end-effector at a desired
location. In robotics, major interest has been on six DOF robots.
Since end-effector has six DOFs in general (three for position, and
the other three for orientation), inverse kinematics on a six DOF
robot gives a unique or at most four different solutions. However,
if a model has 40 DOFs, there exist an infinite number of solutions
(actually, the dimension of the solution space is 34), and only one
of them is selected for the frame.

Because the selection is purely up to the numerical process
employed, even though the end-effector follows anticipated trajec-
tory, joint angles can make abrupt changes. Therefore neighboring
frames won’t have coherence, and simple replay of those frames
may result in a jerky animation. Usually the numerical process
picks a configuration that is reasonably close to the previous con-
figuration. Therefore, in interactive demonstration, many times
the lacking coherence is overlooked. When the result is recorded
into a video disk and replayed at a normal speed, however, the rea-
sonable closeness is not acceptable to human eyes; it can produce
unpleasant artifacts.

On the other hand, motion capture is an effective technique
to measure and copy the complex motion of articulated charac-
ters. However, this technique at its current state has two major
drawbacks. First, the measurement errors are far from negligi-
ble. Without elaborate manual processing the resulting anima-
tion looks shaky or unrealistic. The other drawback, which is di-
rectly relevant to this paper, is that the data is for a specific sub-
ject in performing a specific motion. Obviously, the anthropomet-
ric scale between the measured subject and to-be-animated figure
will be different. Also, the target motion to be animated might be
slightly different from the measured motion. To overcome partly
this poor generality of motion capture data, a variety of motion-
reusing techniques {4, 13, 12, 10] were proposed.

As an effective solution to animate high DOF articulated mod-
els from a limited set of motion capture data, we propose example
guided inverse kinematics (EGIK), which combines inverse kine-
matics with motion capture. A set of motion capture data is used as
an example to be imitated. Before starting the inverse kinematics,
the objective function! is augmented with several extra terms that
will drive the inverse kinematics solution to imitate the example

INonlinear programming is widely used to solve inverse kinematics
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configuration at that moment. The minimization of the objective
function will do two things at the same time: minimizing the gap
between the goal and current end-effector position, and imitating
the original motion.

EGIK can improve both inverse kinematics and motion cap-
ture. As pointed earlier, in the conventional inverse kinematics,
the redundancy in the model causes the lacking coherence prob-
lem. In EGIK, however, the surplus DOFs are involved in imitat-
ing the example motion. Therefore the selection among the multi-
ple choices is not arbitrary. This new inverse kinematics provides
a single choice which is smooth as long as the original motion was
smooth (Section 5). Also, EGIK extends the usability of motion
capture data. From a given motion data virtually any number of
variation is possible. Still the resulting variations all resemble the
original motion in an optimal sense.

The next section relates our work to some notable previous
work. Section 3discusses different foci in imitating example mo-
tion. Section 4presents EGIK algorithm. We show several experi-
mental results in Section 5. Section 6concludes the paper.

A 243 Related Work

Inverse kinematics has been studied in great detail in robotics. But
most robot manipulators are relatively simple, so the robotics liter-
ature seldom addresses techniques for massively redundant mech-
anisms such as human figure. Baker and Wampler [2] developed
a method to utilize the redundancy in achieving functional goals
such as collision avoidance or mechanical soundness. They did
not consider the realism of motion.

In computer graphics, many approaches were proposed to solve
inverse kinematics problem in highly articulated figures. Zhao
and Badler [14] formulated inverse kinematics as an optimization
problem, and solved it using nonlinear programming. Their ap-
proach was successful in positioning end-effectors to satisfy multi-
ple constraints for complex postures. However, the objective func-
tion considered only the positional goal, so could not guarantee
motion coherence in animation.

Boulic and Thalmann proposed a hybrid form of direct and in-
verse kinematic control for articulated figure motion editing [3].
They specified the desired end-effector trajectories with several
half-spaces that define the boundaries, and then applied the coach-
trainee metaphor whenever end-effector tries to go out of the spec-
ified region. Their algorithm for controlling the surplus degree of
freedom was based on mathermatical null space search.

Rose et al. [11] developed an algorithm for generating tran-
sitions between basis motions using a combination of spacetime
constraints and inverse kinematics constraints. They used B-spline
functions for joint angle representation to guarantee a smooth mo-
tion. Their major goal was to generate seamless transitions be-
tween two motion segments, by enforcing inverse kinematics con-
straint. Therefore, it could modify detailed characteristics of the
original motion.

Recently, Gleicher [6, 7], Lee and Shin [8], Choi and Ko [5]

problem of highly redundant articulated figures. The objective function,
which is the gap between the goal and current end-effector position in the
conventional inverse kinematics, is the quantity that should be minimized
by the programming.
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2.3 1. Joint angle copying can fail when there
is a closed loop.

proposed methods for retargeting a motion to different characters.
Gleicher [6, 7] presented a method for editing a motion while pre-
serving as much of the original quality as possible. Lee and Shin
[8] enhanced Gleicher’s work by employing a hierarchical curve
fitting technique and human-specific inverse kinematics solver.
Choi and Ko [5] developed the on-line motion retargeting tech-
nique which enables captured motion to be retargeted in real-time
while the motion is being captured.

In the above work for retargeting, to preserve the qualities of
the original motion, they minimized the difference between the
source and destination motions under the given end-effector con-
straints. Since the end-effector constraints were hard constraints,
the joint angles may have to be significantly modified to satisfy
the constraints. Therefore the retargeted result could be trouble-
some at or near singular configurations. (Singularity occurs when
the end-effector is near or at the boundary of the workspace. In
such a case, to produce a small change of end-effector position,
joints may have to rotate large angles. As a result the motion can
be jerky.)

In our example guided inverse kinematics, however, we con-
sider both the end-effector constraint and joint angle imitation goal
in one objective function (Section 4.2). It means that end-effector
constraint is not a hard constraint any more. Both end-effector
discrepancy and joint angle difference are penalized. The ratio
between them can be controlled by giving different weights. Dif-
ferently from the above algorithms [7, 8, 5], as long as we use a
non-zero weight for the joint angle difference term, our algorithm
produces a smooth motion even near a singular configuration. One
might think our algorithm can sacrifice the end-effector goal sig-
nificantly. An interesting finding of this paper is that by controlling
the weights, end-effector error can be reduced to a negligible level.
The details are presented in Section 4.2.

A 3A Focus of Imitation

Example guided inverse kinematics is based on motion imitation.
Imitating a motion needs to have a focus. In general, people per-
ceive that two motions look similar if the angles are kept the same
at the corresponding joints. We can easily satisfy such condition
when the ratios between the corresponding links are uniform.
When the anthropometric scale of the two articulated figures
is not uniform, however, the above condition does not have much
sense due to the following two reasons; (1) When there exists a
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closed loop as shown in Figure 1, using the identical joint angles
may violate important constraints. (2) If the end-effector trajectory
is the focus of imitation (e.g., when a person write the letter ‘A’
with his finger tip, and another person is imitating it), simple joint
angle copying may not imitate the end-effector motion accurately.

Because it is highly probable that the anthropometry of the
measured subject is not proportional to that of animated figure, in
most cases the joint angle imitation goal should be compromised
with the end-effector imitation goal. There might be many other
imitation foci. But in this work, we consider only the following
two imitation foci:

o The joint angle pattern (A-pattern)
e The end-effector motion pattern (E-pattern)

In the following section we will define the new objective func-
tion in which the above two types of imitation effort can be amal-
gamated.

A 42 Example Guided Inverse Kinematics
(EGIK)

4.1 Overview

_ geometric
l Motion Data Library l End-%feegtsor;gt:nchon mf%??l?etlon
animated
¢ figure

joint angle data &, &, , '_G)," + end-effector function E(@)

positional data &, ,E,, -~,Ex

weight parameters o, B

Objective Function given by animator

optimal joint angle data

n : total number of frames

2.2 2. Overview of EGIK

Figure 2is a diagram showing how EGIK is carried out. It con-
sists of the following steps.

1. Selection from the motion data library:

The motion data library contains a number of example data
sets. A data set consists of the joint angle data ©1,02, .,.,é,,
and the end-effector position data E, ,Ez,...,ﬁn at each frame
of the motion. Here n is the number of frames in the motion.
The joint angle data 8 is J-tuple vector (©},..,07) where
J is the number of joints, and the end-effector position data
E; is three dimensional vector (EZ,EY,E7).

(]

. End-effector function construction:
From the geometric information of the animated figure, the
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end-effector function &(6) is constructed using forward kine-
matics. The end-effector function &(8), which is dependent
on the joint variable § = (6, ..., 87), gives the global posi-
tion of the end-effector.

. Objective function construction using weight parameters
o and 3:
The objective function for EGIK is formulated. The weight
a and J3 for E-pattern and A-pattern, respectively, participate
in forming the function. We present the details in the next
section.

. Solving nonlinear programming:
We minimize the objective function using nonlinear pro-
gramming library, and obtain the optimal joint angle data
61,82,....6n.

4.2 Objective Function for EGIK

In EGIK, we allow a small fraction of error in end-effector po-
sition in order to imitate the joint angle pattern. Let us consider
two error terms, E-error and A-error. E-error is the end-effector
position error ||€(8) ~ E|, thus a small E-error means E-pattern
is accurately transferred. A-error is the joint angle error ||§ — &),
thus a small A-error means A-pattern is accurately transferred.
The objective function of conventional inverse kinematics consists
of a single term, ||€(6) — E||. In our EGIK, the objective function
Gn(6.) is augmented with A-error as in:

G (67) = a GE(6,) + B G2(62) m
with
GE(@.) = [|ga(fa) — Enlf® +
2|18 (0n) = Bnll® + KE | (8n) = Bul®? @
GA(En) = 11 = Bnl® + k2|8 — 64 + K2[16n — 610

where 8., £(6,,), ©,., and E, are joint angle variable, end-
effector function, joint angle data, and end-effector position
data at n-th frame, respectively. kZ k2 kA, k2 are coeffi-
cients of velocity and acceleration error terms. GZ (6,,) and
GA(f.,,) are B-error and A-error terms, respectively. Since
velocity and acceleration are important elements of motion,
Equations (2) and (3) include the terms for imitating the ve-
locity and acceleration of original motion. Actually, we as-
sign small values to the coefficients k2 k2 k4 k2, because
positional imitation is the primary goal.

By Equation (1), each frame of the target motion tries
to imitate both E-pattern and A-pattern of the source mo-
tion. Since imitation is done at each frame independently,
consecutive frames may not be coherent. So we augment
the Equation (1) with an additional penalty term, which
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represents the joint angle differences between the current
frame and the previous frame. This term prevents one spe-
cific joint angle from changing abruptly. The final objective
function for EGIK is

Gn(0n) = a GE(Br) + B GL(0) + 118 — aia?y @)

mi1 0
M= : o, o)
0 myJy
where || - ||a is a matrix M-norm, which is defined by

[zl ar = z* Mz for a vectorz € R’ with a positive-definite
matrix M. The matrix M in Equation (5) represents the
stiffness of the joints. It is typically diagonal if the coupling
factors among joints do not exist. Note that we can assign
different weight values to the diagonal elements of M to
control the stiffnesses. A large value makes the joint stiff.

In Equations (1) and (4), o and § are weights specified
by the animator interactively. For example, a=1,8=0 is the
case of pure inverse kinematics, a=0,3=1 is the case of pure
joint angle copying, and a=0.5,8=0.5 is the case in which
E-pattern and A-pattern are considered with equal weights.
In inverse kinematics, achieving the end-effector position is
the primary goal, so we must assign a much larger value
t0 o than §. The reader might think a nonzero value of 3
causes failure in achieving the end-effector goal. However,
it was one of our interesting findings that a sufficiently small
value of 8 (e.g., a=1, =1075) could preserve the motion
characteristics quite well, while the error in end-effector po-
sitioning was negligible. We show the quantitative analysis
in Section 5

4.3 Solving Nonlinear Programming

We minimize the objective function using nonlinear pro-
gramming (NLP). Among diverse approaches for the prob-
lem, Lagrange method and SQP(Sequential Quadratic Pro-
gramming) are two popular methods [9]. It is unrealistic
t0 expect to find one general NLP code that works for ev-
ery kind of nonlinear model. Instead, one should try to se-
lect a code that fits the problem. In this work, to see how
much our solution depends on different NLP algorithms, we
have used two optimization packages; LANCELOT [1] and
DONLP2. LANCELOT is a large-scale implementation of
the augmented Lagrangian approach?, and DONLP? is an
implementation of SQP method®. We found that in most
cases the two solvers produce almost equivalent results.

2The augmented Lagrangian algorithm is based on successive mini-
mization of the augmented Lagrangian.

3The sequential quadratic programming algorithm is a generalization
of Newton’s method for unconstrained optimization in that it finds a step
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A scaling factor must be considered in Equation (4),
since the unit of end-effector position data is centimeter
(cm) and the unit of joint angle data is radian. From our
experiments, we found that it is a good approximation to
multiply the square of total-link-length to A-error term. The
theoretical foundation is as follows; when the serial chain
with the total link length of L cm rotates one full cycle about
the robot base, the base joint rotates 27 radian and the
end-effecior moves 2w L cm. Considering the squared er-
ror terms of G(), (2w L/27)? = L? should be the scaling
factor between the A-error and E-error terms.

4.4 Discussion

In other approaches [7, 8] for retargeting problem, the
objective function is the time integral of the errors between
the source and target motions.

G(m) = [ (m(t) = mure(0) ©
It is computationally expensive, thus has to be done in off-
line. We can distinguish our solution from the above ap-
proaches by the following.

o EGIK performs the optimization at each frame in-
dependently. Therefore it involves much less compu-
tation, and can process motions of virtually unlimited
lengths.

Optimization at individual frames can increase re-
targeting quality. Spacetime constraint based ap-
proaches [7] obtain the target motion by minimizing a
single scalar quantity, whereas our EGIK minimizes a
scalar for each frame. Such frame-by-frame optimiza-
tion can increase the fidelity of motion retargeting.

EGIK is free from the problems due to singular-
ities. Retargeting algorithms with hard end-effector
constraints can produce jerky result at or near the sin-
gular configurations. In EGIK, both end-effector con-
straints and joint angle imitation goal are considered
in one objective function. It can effectively prevent
a jerky motion at a singular configuration by sacrific-
ing a small (negligible) fraction of end-effector goal
achievement to follow the joint angle pattern.

A 572 Experiments

EGIK was implemented on Silicon Graphics Octane MXI
workstation.

away from the current point by minimizing a quadratic model of the prob-
lem. In its purest form, the SQP algorithm replaces the objective function
with the quadratic approximation.
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2.3 3. Human models. (The numbers in the
leftmost box represent the DOFs at the joints,
and the numbers in the other boxes represent
link lengths.)
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(a) Abnorman-1
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(b) Abnorman-2

(a) Norman (b) Abnorman-1
1.9 4. Snapshots from the throwing motions
of Norman and Abnormans.

The following discussion refers to the animation clips put
on  “htip://graphics.snu.ac.krfresearch/egik/index.html”,
which were produced using EGIK algorithm.

We modeled three articulated human figures. The first
one, called Norman, is the subject whose motion was mea-
sured. The second and third ones are called Abnorman-
1 and Abnorman-2, respectively. As shown in Figure 3,
Abnorman-1 has longer limbs and shorter torso than Nor-
man, while Abnorman-2 has excessively shorter limbs and
longer torso. Those two figures are out of proportion on pur-
pose, in order to demonstrate that our algorithm is capable
of producing similar motions in spite of the anthropometric
differences.

The throwing motion of Norman (Figure 4) was retar-
geted to Abnormans 1 and 2 using different vatues of o.,8.
Figure 4shows snapshots during the process. In animat-
ing Abnormans, it might be reasonable to scale the end-
effector trajectories proportional to the size of animated fig-
ures. However, we did not scale the end-effector trajectories
in order to demonstrate the adaptability of our algorithm.

Figure 5shows E-error and A-error of Abnormans at dif-
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(¢) Abnorman-2

1.2 5. Average errors in the motion of Abnor-
mans 1 and 2. For the end-effector error, the
average was taken over all frames. For the
joint angle error, the average was taken over
all joints over all frames. The averages were
normalized between [0,1]. In (a), actual end-
effector error at 8 = 1 was 14 cm, and joint
angle error at 8 = 0 was 12 degrees. In (b),
they were 43 cm and 27 degrees, respectively.

ferent values of o and 8 (o = 1 — (). As expected, us-
ing a larger § value increases the end-effector errors but re-
duces the joint-angle errors. In (a), the errors of Abnorman-
1 are reduced rapidly even with a small value of & or §.
In (b), the errors of Abnorman-2 drop slower than those of
Abnorman-1. It is predictable; the anthropometric discrep-
ancy of Abnorman-2 is a lot more excessive than that of
Abnorman-1.

The graphs in Figure 6plot the shoulder angles of Abnor-
mans 1 and 2 during the throwing motion. The fluctuating
solid curve is for the case when 8 = 0, the fine-dotted curve
is for the case when 8 = 1, and the dashed curve is for the
case of EGIK(8 = 1073). Note that in the case of EGIK,
joint motions follow the original joint angle pattern quite
accurately if the anthropometric difference is not excessive,
while the end-effector error was negligible (10~4), In Fig-
ure 6(b), due to the excessive anthropometric difference, a
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1.7 6. Shoulider angle in Abnormans’ motion.
Solid, dashed, dotted curves represent con-
ventional IK (5=0.0), EGIK (8=10%), and pure
joint angle copying (8=1.0), respectively.

small value of 3 could not imitate Norman'’s joint angle pat-
tern well. But the animated result still seems to preserve the
original motion characteristics. Refer to the animation put
on the web. Table 1summarizes the end-effector errors at a
few ( values.

A 63 Conclusion and Future Work

We have presented a new algorithm to solve inverse kine-
matics problem by imitating an example motion. The al-
gorithm can be also used to retarget a motion to different
characters. It is an improvement over the previous inverse
kinematics or motion retargeting algorithms in the follow-
ing aspects:

e Coherence between frames: it guarantees coherence
between frames.

o Robustness in motion retargeting: by imposing a
soft constraint on the end-effector position, the algo-
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rithm can produce a natural motion even for the mo-
tions with singular configurations.

e Increased fidelity in retargeted motions: the al-
gorithm minimizes a scalar quantity at every frame,
which increases the fidelity of retargeting compared to
the spacetime constraint based methods.

e Computational efficiency and ability to process
long sequence of motion: since it performs optimiza-
tion at individual frames independently, it involves less
computation than the spacetime constraint based meth-
ods, and can process motions of virtually unlimited
length.

As a future work, dynamic soundness should be consid-
ered. Kinematically generated motion may not be feasible
in the physical world due to the difference in the strength
of the two bodies or some other body conditions. Therefore
the result of our example guided inverse kinematics should
be further adjusted to account for dynamic balance or limi-
tations of the body.
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