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Network function virtualization can significantly improve the flexibility and effec-

tiveness of network appliances via a mapping process called service function

chaining. However, the failure of any single virtualized network function causes

the breakdown of the entire chain, which results in resource wastage, delays, and

significant data loss. Redundancy can be used to protect network appliances; how-

ever, when failures occur, it may significantly degrade network efficiency. In

addition, it is difficult to efficiently map the primary and backups to optimize the

management cost and service reliability without violating the capacity, delay, and

reliability constraints, which is referred to as the reliability‐aware service chaining

mapping problem. In this paper, a mixed integer linear programming formulation

is provided to address this problem along with a novel online algorithm that

adopts the joint protection redundancy model and novel backup selection scheme.

The results show that the proposed algorithm can significantly improve the request

acceptance ratio and reduce the consumption of physical resources compared to

existing backup algorithms.
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1 | INTRODUCTION

In recent years, the demand for Internet services has grown
rapidly due to the explosive adoption of mobile devices
and the emergence of novel networking paradigms, such as
the Internet of Things (IoTs) [1]. The networks of today
include a multiplicity of vertically integrated proprietary
middleboxes, such as firewalls, intrusion detection systems
(IDSs), and network address translation (NAT) appliances.
However, the deployment of statically configured middle-
boxes results in two main problems. The first is that both a
high capital expenditure (CAPEX) and operating expendi-
ture (OPEX) is required, and second, it is impossible to
add new functionality to an existing middlebox. These
problems make it difficult for network operators to deploy
new services. Consequently, research into new dynamic
service models has grown in importance [2,3].

Both of these problems can be solved by software‐
defined networking (SDN) [4] and network function virtu-
alization (NFV) [5]. In SDN, the control plane is decoupled
from the data plane. The controller in these networks is the
central administrator of the network and programmatically
configures the forwarding flow tables in the switches,
thereby enabling virtualized network function (VNF)
orchestration. NFV shifts packet processing functions from
hardware middleboxes toward software implementations,
thereby enabling network optimization and cost reduction.
Dynamic service chaining is an enabler of the SDN/NFV
networking paradigm and provides a flexible and economic
alternative to the static network environment of today for
application service providers and Internet service providers.

At present, dynamic service chaining technology is still
in its infancy and software‐based middleboxes pose unique
reliability challenges for future networks [6–8]. Managing
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the network reliability is critically important as the failure of
any VNF in an arbitrary service chain, be it hardware, such
as the failure of the virtual machine providing that VNF, or
software, such as the misconfiguration of the VNF itself, will
disrupt the entire chain [9]. Sherry et al. [10] proposed a
middlebox architecture with high fault tolerance that reduces
the probability of VNF failure by rolling back the processing
state. However, as this mechanism is only optimized inside
the hardware‐based middlebox, this can increase physical
resource consumption and has certain limitations for the
improvement ratio. Long et al. [11] focused on the reliabil-
ity‐aware service chaining mapping (SCM) problem in order
to minimize the network‐wide communication bandwidth
required for service chaining under service reliability con-
straints. However, they did not consider failures at the VM
level in their reliability functions and their focus was on
specific issues related to chaining, such as routing and VNF
ordering, that constrain VNF‐to‐host placement. Further-
more, their model did not include CPU capacity constraints.
Long et al. [12] further proposed a reliability‐aware joint
VNF chaining placement and flow routing optimization
method, which can be easily extended to support resource
sharing between adjacent backup VNFs. Fan et al. [13] pro-
posed a joint protection (JP) redundancy model to effectively
save resources, such as CPU and bandwidth, compared to
two other redundancy models, namely, the dedicated protec-
tion (DP) redundancy model and the shared protection (SP)
redundancy model. However, a mathematical proof of their
model was not provided. Based on their proposed JP redun-
dancy model, Fan et al. [14] further proposed a highly reli-
able service chaining backup method that used a greedy
strategy to select the two least reliable VNFs for redundancy,
which made it easy to obtain the local optimal solution. Car-
pio and Jukan [15] proposed a migration‐based reliability
service chaining deployment method that ensured service
continuity via a resource migration strategy; however, this
approach resulted in a longer recovery time. Gill et al. [16]
and Potharaju et al. [17] proposed the typical 1 + 1 standby
redundancy model; however, this approach was later aban-
doned as it wasted a large number of backup resources. Hma-
ity et al. [18] proposed different approaches to provision
service chainings with resiliency against single‐link and sin-
gle‐node failures, then proposed three integer linear program-
ming (ILP) models to jointly solve the problem of VNF
placement and traffic routing while guaranteeing resiliency
against single‐link and/or single‐node failures. Scholler et al
[19] presented a solution for the resilient deployment of net-
work functions based on OpenStack for the design and
implementation of the proposed service orchestrator mecha-
nism. Liu et al. [20] evaluated the reliability criterion within
a probabilistic model and proposed a linear programming
(LP) model to address the joint optimization of the chain
composition problem.

The above studies on reliability‐aware SCM focused on
aspects of migration and redundancy. However, few studies
have focused on the design of an online reliability‐aware
SCM strategy that optimizes the conflicting objectives of
management cost and service reliability while respecting
the resource capacity, delay, and reliability constraints. The
focus of the current study was to develop an optimal map-
ping strategy in terms of the improvement ratio and man-
agement cost. Here, as redundancy is introduced in a
virtualization layer, it is therefore straightforward to
dynamically create VNFs in dynamic NFV‐enabled scenar-
ios. A JP model is also adopted [13], which requires a
backup VNF to reserve sufficient CPU resources for all pri-
mary VNFs it protects. This allows service chaining to con-
tinue as normal even if all primary VNFs fail
simultaneously. In addition, in the shared protection model,
one backup VNF can take over the traffic when any one of
the primary VNFs it protects fails by allocating the maxi-
mum amount of resources required among all primary
VNFs. This JP approach provides higher reliability while
consuming fewer resources compared to the shared protec-
tion model. A detailed proof can be found in Appendix A.

To address reliability‐aware SCM in the dynamic NFV‐
enabled scenario, a novel online algorithm is proposed that
adopts the JP redundancy model and a novel backup selec-
tion scheme. To the best of our knowledge, no existing
works have addressed this problem. Two key contributions
of the current work are as follows:

The reliability‐aware SCM problem is theoretically for-
mulated based on the mixed integer linear programming
model.

A novel online algorithm is proposed based on the JP
redundancy model and a novel backup selection scheme,
the performance of which is evaluated in MATLAB.

The remainder of this paper is organized as follows.
First, the mathematical model used for the proposed system
is introduced and the reliability‐aware SCM problem is for-
mally defined (Section 2). Then, a mixed integer linear
programming (MILP) formulation is presented (Section 3).
Next, a novel online algorithm is proposed to obtain the
near‐optimal solution (Section 4). Finally, the proposed
algorithm is validated via MATLAB (Section 5) and the
work is concluded by outlining several promising future
directions (Section 6).

2 | NETWORK MODEL AND
PROBLEM DESCRIPTION

In this section, the mathematical model for the proposed
system is introduced (Sections 2.1 and 2.2) and the reliabil-
ity‐aware SFC mapping problem is formally introduced
(Section 2.3).
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2.1 | Physical networks

In this model, the physical network is defined as an undi-
rected graph Gs = (Ns, Es, MN, ML), where Ns represents a
set of physical nodes where the VNFs can be deployed, Es

represents a set of physical links connecting ns ∈ Ns, MN

represents the remaining CPU resources on ns ∈ Ns, and
ML represents the remaining bandwidth on es ∈ Es. Each
physical node ns ∈ Ns is associated with a set of x types of
resources Sxn ¼ fsinji∈ ½1; x�g, where sin represents the
capacity of resources of type i, namely CPU, memory, or
bandwidth. Given the set of resources available at a physi-
cal node ns ∈ Ns, each VNF requires a set of resources to
perform one single network function denoted fn ∈ F, where
F ¼ ∪Ns

i¼1fi represents the set of all VNFs. In addition, each
physical node ns ∈ Ns is associated with a reliability rn.

2.2 | SFC request

It is assumed there is a set of m SFC requests represented
by Γ = (t1, t2, …, tm) and each request can be described as
t ¼ ðst; dt;Ft; δt;Θt

reqÞ, where st and dt represent the fixed
ingress and egress of t, respectively, and Ft represents the
set of VNFs of t. Each SFC request requires that the
expected propagation delay from ingress to egress is within
δt and the reliability is above Θt

req, as specified in the corre-
sponding service level agreements (SLAs).

2.3 | Reliability‐aware SCM problem
description

Next, a dynamic NFV‐enabled scenario is considered
where an operating network serves a set of online requests
Γ. In this network, a set of VNFs has already been placed
and routing paths for the traffic in Γ have also been provi-
sioned. Here, the operating network receives new online
requests and seeks to provision the required VNFs and
routing paths. When mapping a service chain, it is possible
to map a VNF to a physical node (PN) by reserving an
appropriate type and amount of CPU resources in a chosen
PN to perform the function requested by that VNF or to
map a logical link by allocating an appropriate amount of
bandwidth along the chosen service path to carry the traffic
flow from one VNF to another.

Example: As shown in Figure 1, the VNF requiring a
Media Resource Function (MRF) on SFC 1 can only be
mapped onto PN4, which is the only PN providing this
function. The traffic from the MRF to HSS can flow
directly from PN4 to PN6 or be redirected via any other
path beginning with PN4 and ending with PN6.

A service chain is considered to be available at a given
time if all associated VNFs are functioning normally. In
other words, all VNFs have heterogeneous reliability.

However, the presence of only high‐reliability VNFs is not
enough to satisfy the requirements of service chain reliabil-
ity. In addition, the failure of any one of the VNFs in a ser-
vice chain results in a breakdown of the entire chain, which
results in resource wastage, delays, and significant data loss.

Example: Figure 1 illustrates two service chains,
namely, SFC1 and SFC2. SFC1 includes three primary
VNFs, SGW, MME, and HSS, for which the reliability
requirement is 0.82. The reliability of each VNF is 0.9,
0.95, and 0.98, respectively. The reliability of this chaining
is 0.84, which is sufficient to satisfy the requirements of
the application. Thus, there is no need to provide backup
functions. SFC2 includes four primary VNFs, namely,
SGW, CSCF, MRF, and HSS for which the reliability
requirement is also 0.82, and the reliability of each VNF is
0.9, 0.92, 0.91, and 0.98, respectively. Thus, the reliability
of this SFC does not satisfy the requirements of the appli-
cation. To mask failures in such configurations, off‐site
redundancy protection strategies can be employed to ensure
sufficient reliability.

In this paper, a JP model is adopted for VNF failures
that provides end‐to‐end protection to all connected VNFs.
The amount of CPU resources and bandwidth reserved at
the backup will be sufficient for all primary VNFs and
interconnected logical links, respectively.

At this stage, it should be noted that if a failure occurs,
it is assumed that an SDN controller will configure inter-
mediate switches along the path of the service chain to
reconstruct the chain by activating switch ports connected
to backup VNFs to replace the one that failed and blocking

Reliability evaluation module Backup selection module

NFV management and orchestration

Network services requests

Ingress P/S
GW

CS
CF MRF

MME

EgressHSS
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FIGURE 1 Service chain mapping for an network function
virtualization with off‐site redundancy
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ports connected to the failed VNF. This ensures a seamless
switchover of the traffic in the reconfigured backup path
and enables the SFC request to still function normally even
if all primary VNFs failed simultaneously.

Example: For simplicity, it is assumed that both CSCF
and MRF can be backed up, in other words, nb = nb1 +
nb2, and sufficient amount of backup resources will be
reserved at backup nb for CSCF n1 and MRF n2, in other
words, sb = s1 + s2. In addition, sufficient bandwidth will
be reserved for backup links eb ∈ Eb to connect each
backup VNF in sequence to form a backup path, as shown
in Figure 1. Here, eb = (n1, nb1) ⋃ (nb1, nb2) ⋃ (nb2, n1)
represents the requested backup logical links, where (nb1,
nb2) represents the virtual link between backup CSCF nb1
and backup MRF nb2, (n1, nb1) represents the virtual link
between failed CSCF n1 and backup CSCF nb1, and (nb1,
n2) represents the virtual link between failed MRF n2 and
backup MRF nb2.

As shown in Figure 1, the mapping procedure is as fol-
lows. First, an online service chain request arrives with a
specific reliability requirement at the centralized controller,
such as NFV management & orchestration (MANO), and is
mapped via all primary VNFs to the datacenters along the
shortest path. Second, the controller executes the reliability
evaluation module, which periodically evaluates reliability
of network and collects information related to the state of
the network. Third, based on the results of the reliability
evaluation module, the controller runs the backup selection
module to determine the optimal number of backup VNFs.
Then, the results of the backup selection module are incor-
porated into the configuration policy and the backup links
are instructed to connect these selected backup VNF
instances based on the JP model to form the backup topol-
ogy. Finally, the backup topology is reviewed to ensure it
efficiently connects the datacenter sites and that all logical
links are mapped to physical links, thus optimizing the
conflicting objectives of management cost and service relia-
bility while simultaneously satisfying the capacity, reliabil-
ity, delay, and connectivity constraints (discussed in
Section 3.3).

In summary, reliability‐aware service chain mapping
can be decomposed into two phases: primary mapping and
backup mapping. In primary mapping, all primary VNFs
and the associated logical links are mapped to the physical
network. In backup mapping, the constraints to select
backup VNFs should be considered when forming backup
paths based on the JP model. The reliability‐aware SCM
can be abstractly described as follows.

2.3.1 | Primary mapping

Given a virtual network Gv = (Nv, Ev), where Nv represents
a set of primary VNFs, and Ev represents a set of primary

logical links, and given a physical network Gsub = (Nsub,
Esub), where Nsub represents a set of physical nodes and
Esub represents a set of physical links, the primary topology
mapping process f can be described as:

f : GvðNv;EvÞ↦GsubðNsub;EsubÞ: (1)

Primary mapping must consider the site capacity, link
capacity, and location constraints. That is:

MNðns; nvÞ≥ cðnvÞ; 8ns ∈Nsub; nv ∈Nv

ns ∈ LociðnvÞ
MLðes; evÞ≥ bwðevÞ; 8es ∈Esub; ev ∈Ev

8<
: ; (2)

where Gsub represents a subgraph of Gs, Nsub ⊂ Ns, and
Esub ⊂ Es. The primary mapping f can be decomposed into
the primary VNF mapping fN: N

v ↦ Nsub and the primary
logical link mapping fE: Ev ↦ Esub, MN(n

s, nv) represents
the total load of the CPU resource provided to the primary
VNF nv ∈ Nv at each physical node ns ∈ Nsub, Loci(n

v)
represents the orchestration order constraint of service
chain t, ML(e

s, ev) represents the total bandwidth provided
to primary logical link ev ∈ Ev at each physical link es ∈
Esub, c(nv) represents the amount of requested CPU
resources for the primary VNF nv ∈ Nv, and bw(ev) repre-
sents the amount of requested bandwidth for the primary
logical link ev ∈ Ev.

2.3.2 | Backup mapping

Given a virtual network Gv
b = (Nb, Eb), where Nb repre-

sents a set of backup VNFs and Eb represents a set of
backup logical links, and a physical network Gs

b = (BN,
BE), where BN represents a set of backup physical nodes
and BE represents a set of backup physical links, the
backup topology mapping process fb can be described as:

fb: Gv
bðNb;EbÞ↦Gs

bðBN ;BEÞ: (3)

In backup mapping, the site capacity and link capacity
constraint must be considered. That is:

MNðns; nbÞ≥ cðnbÞ; 8ns ∈BN ; nb ∈Nb

MLðes; ebÞ≥ bwðebÞ; 8es ∈BE; eb ∈Eb

�
; (4)

where Gs
b represents a subgraph of Gs, BN ⊂ Ns, and BE ⊂

Es. The backup mapping f can be decomposed into the
backup VNF mapping f Eb : N

b ↦ BN and the backup logical
link mapping f Eb : N

b ↦ BN. Here, MN(n
s, nb) represents the

total load of the CPU resource provided to backup VNF
nb ∈ Nb at each physical node ns ∈ BN, ML(e

s, eb) repre-
sents the total bandwidth provided to the backup logical
link eb ∈ Eb at each physical link es ∈ BE, c(n

b) represents
the amount of requested CPU resources for the backup
VNF nb ∈ Nb, and bw(eb) represents the bandwidth
requested for the backup logical link eb ∈ Eb.
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3 | MODELS FOR RELIABILITY‐
AWARE SERVICE CHAIN MAPPING

In this section, the reliability (Section 3.1) and cost models
(Section 3.2) considered in this work are described, then a
mixed integer linear programming (MILP) formulation is
provided (Section 3.3). The symbols used for the model
are listed in Appendix B.

3.1 | Reliability model

The reliability model is based on the following definitions:
Definition 1. Reliability of a single component. A ser-

vice chain can be decomposed into its constituent compo-
nents, of which the reliability can be obtained via the
network management system, such as the SDN. Here, the
reliability of a component is based on the time the compo-
nent is available relative to the total time the network was
operational. Therefore, the reliability of a VNF can be
expressed based on the Mean Time Between Failure
(MTBF) and Mean Time To Repair (MTTF). In general,
the reliability of a VNF can be characterized as:

rVNF ¼ MTBFVNF � ðMTBFVNF þMTTRVNFÞ�1: (5)

Definition 2. Reliability of the composed system. In
general, each service chain is composed of a number of
VNFs and ideally, each constituent component must oper-
ate normally. In this paper, for simplicity, only VNF fail-
ures are considered. To increase the reliability of a service
chain, each traffic node can be only provisioned onto
exactly one VNF to ensure the failure probabilities are
independent between VNFs. When no‐backup VNF is pro-
visioned, the corresponding reliability of an arbitrary ser-
vice chain is given by:

Rt ¼ Π
fn ∈ 1; Fj j½ �

rfn ; 8t∈ 1; Γj j½ �: (6)

If the reliability Rt of t satisfies the requirement Θt
req, in

other words, Θt
req<Rt, then there is no need to provide

backup VNFs. Otherwise, the addition of backup VNFs will
increase the robustness of t. Each primary VNF fn ∈ F has at
least one redundant function provisioned in case any primary
VNFs along the service chain are blocked. Here, it is
assumed that Fb represents the set of all redundant functions
of t, namely, the primary VNFs. The reliability after the
backup VNF is added can be expressed as follows:

R0
t ¼ Π

fn ∈ 1; Fj j½ �
1� Π

fb ∈ 1; Fbj j½ �
∑

k ∈ 1; Nsj j½ �
1� rfbx

fb
k

� �" #
;

8t∈ 1; Γj j½ �:
(7)

Definition 3. Improvement ratio. The improvement ratio
is the ratio of the improvement on the reliability of the
composed system to the reliability before backups are
added. The improvement ratio is defined as follows:

Ut ¼ R0
t � Rt

Rt
; 8t∈ 1; Γj j½ �: (8)

3.2 | Cost model

It is assumed that the mapping of a reliability‐aware ser-
vice chain comes with a fixed management overhead.
The novel concept of resource stress factor (RSF) is
defined to ensure critical resources, such as CPU and
bandwidth, are not overused without incurring significant
management cost. In this context, the following terms
are defined:

Definition 4. Node importance factor. In Gs, it is
assumed the degree of ns is di, then NIF = (1/d1, 1/d2, …,
1/dn) represents the node importance factor of adjacent
points.

Definition 5. Node connectivity factor. The node con-
nectivity factor is defined as the degree of impact the fail-
ing service node has on the remaining network topology. If
A(Gs) represents the adjacency matrix of Gs, then let
NCF = NIF × A(Gs) be the degree of impact of each ser-
vice node. Thus, the node connection factor (NCF) can be
expressed as follows:

NCFðnsÞ¼
NCFðnsÞ�minðNCFÞ

maxðNCFÞ�minðNCFÞ ;maxðNCFÞ�minðNCFÞ≠0
1; maxðNCFÞ�minðNCFÞ¼0

(
:

(9)

Definition 6. Edge connectivity factor. The edge con-
nectivity factor is defined as the degree of impact of the
failing edge on the remaining network topology and
ECFij = (1/di + 1/dj)/2 represents the edge connectivity
factor.

Definition 7. Saturation factor. The saturation factor
(SF) is defined as the degree of impact when a service
node or edge fails. Here, the saturation factor is expressed
as follows:

SFðxÞ ¼
0; k ¼ 0

ðPMxÞ1=y; x∈ 1; Nsj j½ �
ðPMxÞ1=y; x∈ 1; Esj j½ �

8<
: ; (10)

where SF(x) represents the saturation factor of a resource
of type x, y represents the number of times a resource of
type x can instantiate a VNF or a logical link, and PMx

represents the percentage of resources allocated by a
resource of type x.
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Definition 8. Resource stress factor. Considering the
above three definitions, the resource stress factor can be
represented as follows:

ψðxÞ ¼ α� NCFðxÞ þ β � SFðxÞ; x∈ 1; Nsj j½ �
α� ECFðxÞ þ β � SFðxÞ; x∈ 1; Esj j½ �

�
; (11)

where α and β are weighting factors that are used to adjust
the relative importance between the connectivity factor and
the saturation factor, and α + β = 1. Here, the manage-
ment cost can be expressed as follows:

C ¼ ∑
ns ∈ 1; Nsj j½ �

ψðnsÞCðnsÞ þ ∑
es ∈ 1; Esj j½ �

ψðesÞCðesÞ; (12)

where C(es) and C(ns) represent the initial resource con-
sumption of the service node and edge, respectively. Note
that the higher the RSF value, the higher the cost of the
mapping. Once the mapping has been defined, the total
management cost can be decomposed into two parts: the
primary cost and the backup cost. The total mapping cost
can then be computed as follows:

Ct ¼ μ1 ∑
fn ∈ 1; Fj j½ �

CðfnÞxfnk þ μ2 ∑
m∈ 1; Esubj j½ �

CðmÞymij

þ μ3 ∑
f b ∈ 1; Fbj j½ �

CðfbÞxfbk þ μ4 ∑
m0 ∈ 1; Ebj j½ �

Cðm0Þym0
fb ;

8k∈ 1; Nsj j½ �; i∈ 1; Sj j½ �; j∈ 1; Fj j½ �;

(13)

where μ1, μ2, μ3, and μ4 are weighting factors that are
used to adjust the relative importance of these cost com-
ponents.

3.3 | MILP formulation

Next, the problem of reliability‐aware SFC mapping in a
dynamic NFV‐enabled scenario is considered and xfnk (fn ∈
[1, |F|], k ∈ [1, |Ns|]) is introduced to indicate which of
the VNFs in the set fn can be provisioned on a physical
node k. That is:

xfnk ¼
1 a primary VNF fn ∈ 1; Fj j½ �is provisioned on

k∈ 1; Nsub
�� ��� �

0 otherwise:

8<
:

(14)

A binary variable ymij (i ∈ [1, |S|], j ∈ [1, |F|], m ∈ [1, |
Esub|]) is now introduced to formulate the routing of the
primary link.

ymij ¼
1 a primary linkm∈ 1; Esub

�� ��� �
is selected by function j of service i

0 otherwise.

8<
: (15)

Also, a binary variable xfbk (fb ∈ [1, |Fb|], k ∈ [1, |Ns|])
is defined to represent the backup VNF hosted on the phys-
ical node k ∈ BN. That is:

xfbk ¼
1 a backup VNF fb ∈ 1; Fb

�� ��� �
is hosted on k∈ 1; BNj j½ �

0 otherwise:

8<
: (16)

A binary variable ym
0

fb (fb ∈ [1, |Fb|], m′ ∈ [1, |Eb|]) is
introduced to formulate the routing of the backup link.

ym
0

fb ¼
1 a backup link m∈ 1; Eb

�� ��� �
is selected by fb ∈ 1; Fb

�� ��� �
0 otherwise.

8<
: (17)

Now, define Fb
ij to be the number of instances of the

jth VNF of network service i that have been provisioned
to protect the corresponding chain (the calculation of Fb

ij

is detailed in the next section). These VNF instances can
be instantiated and mapped along the service path. A bin-
ary variable hij (i ∈ [1, |S|], j ∈ [1, |F|]) is introduced to
distinguish between no‐backup and backup placements.
That is:

hij ¼ 1 jth function of service i is protected by backups
0 otherwise.

�
(18)

When an online service chaining request arrives with a
specific reliability requirement, the objective of the system
operator is to derive an optimal resource assignment strat-
egy in the dynamic NFV‐enabled scenario that minimizes
the cost while maximizing the reliability. Note that these
two criteria are in conflict: the more the backup VNFs, the
less the risk of service unreliability; however, the higher
the cost of the mapping. Because it is hard to optimize for
both criteria simultaneously, a scalarization method is
applied to transform this problem into a single‐objective
one. In this case, the objective can be mathematically
described as:

maximize ðγUUt � γCCtÞ: (19)

Note that the intent of the normalization introduced in
the above expression is to minimize the management cost
while maximizing the improvement ratio. The relative
importance of the two criteria is dictated by a specific pol-
icy as encoded in a pair of weights γU and γC that represent
the reliability and cost, respectively. In addition, the terms
Ut and Ct are transformed into non‐dimensional forms.

The constraints of the optimization model are as fol-
lows.

3.3.1 | Site capacity constraint

The total load of the CPU resource across all service chain-
ing requests and primary/backup VNFs at each physical
node k ∈ Ns should be less than or equal to its CPU capac-
ity. This can be expressed as follows:
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∑
fn∈ 1; Fj j½ �

cðfnÞxfnk þ ∑
f b∈ 1; Fbj j½ �

cðfbÞxfbk ≤MNðkÞ;8k∈ 1; Nsj j½ �:

(20)

This enforces a limit on the CPU resource capacity of
the node, where the sum of cðfnÞxfnk represents the total
CPU usage by all primary VNFs and the sum of cðfbÞxfbk
represents the total CPU usage by all backup VNFs.

3.3.2 | Link capacity constraint

The total required bandwidth across all service chain
requests and primary/backup logical links at each physical
link m ∈ Es should be less than or equal to its bandwidth
capacity. This can be represented as follows:

∑
m∈ 1; Esubj j½ �

bwðmÞymij þ ∑
m0 ∈ 1; Ebj j½ �

bwðm0Þym0
fb ≤MLðmÞ;

8k∈ 1; Nsj j½ �; i∈ 1; Sj j½ �; j∈ 1; Fj j½ �; fb ∈ 1; Fb
�� ��� �

:

(21)

This enforces a limit on the bandwidth capacity of a
link, where the sum of bwðmÞymij represents the total band-
width used by the primary logical links and the sum of
bwðm0Þym0

fb represents the total bandwidth used by the
backup logical links.

3.3.3 | Reliability constraint

Note that the maximum reliability that a provisioned VNF
chain can achieve is determined by the number of redun-
dant VNFs Fb

ij. Each primary function fn ∈ F may have
one or more redundant functions (of the same type) provi-
sioned to restore the service (of the chain) when the pri-
mary function fails. In order to obtain a feasible solution
with reliability guarantee Θt

req, it is necessary to determine
the optimal number of Fb

ij. aaaTherefore, a reinforcement
learning model that exploits VNF redundancy is adopted
and employed hereinafter. The optimal number of redun-
dant VNFs can be obtained via an iterative method. To
achieve the reliability requirements of a network service,
the following constraint is introduced:

∑
k∈ 1; Nsj j½ �

yfnk ≥Fb
ij; 8i∈ 1; Sj j½ �; j∈ 1; Fj j½ �: (22)

This ensures there are sufficient backup VNFs Fb
ij to

achieve the required reliability of t. An iterative method to
determine the value of Fb

ij is presented in Section 4.2.

3.3.4 | Connectivity constraint

As it is important to enforce the right order for traversing
the routing between primary and backup VNFs, a connec-
tivity constraint based on the flow balance criteria is

defined to ensure the incoming flow is equivalent to the
outgoing flow at physical nodes, except the ingress and
egress. This can be expressed as follows:

∑
m:node¼k1

ymij� ∑
m0:node¼k2

ym
0

ij 1� hij
� 	� ∑

m00:node¼k3
ym

00
fb hij ¼ 0

8k1; k2; k3 ∈ 1; Nsj j½ �; i∈ 1; Sj j½ �; j∈ 1; Fj j½ �;
8m;m0 ∈ 1; Eb

�� ��� �
;m00 ∈ 1; Esub

�� ��� �
;

(23)

∑
m∈ 1; Esubj j½ �

∑
m0 ∈ 1; Ebj j½ �

ymij y
m0
fb ¼ 0;

8i∈ 1; Sj j½ �; j∈ 1; Fj j½ �; fb ∈ 1; Fb
�� ��� �

:

(24)

The first ensures that, for an arbitrary physical node, the
flow balance must be satisfied if the jth VNF of service i is
protected by the service path, while the second ensures the
primary and backup paths do not coincide with each other.

3.3.5 | Delay constraint

The overall end‐to‐end delay is composed of two compo-
nents: (i) the processing and transmission delay resulting
from VNF mapping without backups instantiated, in other
words, hij = 0 and Ds

ij > 0; and (ii) the processing and
transmission delay resulting from VNF mapping with back-
ups instantiated, in other words, hij = 1 and Db

ij > 0. This
can be represented as follows:

∑
j∈ 1; Fj j½ �

1� hij
� 	

Ds
ij þ hijDb

ij

h i
≤ δt; 8i∈ 1; Sj j½ �; t∈ 1; Γj j½ �;

(25)

Db
ij ¼ ∑

m∈ 1; Esubj j½ �
ymij μm þ ∑

m0 ∈ 1; Ebj j½ �
∑

fb ∈ 1; Fbj j½ �
ym

0
fb x

fb
k μm0

� ∑
m00 ∈ 1; Esubj j½ �

∑
fn ∈ 1; Fj j½ �

ym
00

fb x
fn
k μm00 ;

8k∈ 1; Nsj j½ �; 8i∈ 1; Sj j½ �; j∈ 1; Fj j½ �;

(26)

Ds
ij ¼ ∑

m∈ 1; Esubj j½ �
ymij μm; 8i∈ 1; Sj j½ �; j∈ 1; Fj j½ �; (27)

where (25) ensures the end‐to‐end delay of each service
chain should be less than or equal to δt. There are two
parts to (26): the delay experienced by the backup VNF
instances and traffic steering through the rest of the service
chain. In (26), the sum of ymij μm and ym

0
fb x

fb
k μm0 indicates the

total processing and transmission delay along the service
path. However, this value includes any overlapping delay
from the shared backup VNFs. Thus, the corresponding
delay of the shared instance of every backup VNF is sub-
tracted. The processing and transmission delay without
backups instantiated are represented in (27).
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3.3.6 | Placement constraint

The primary/backup VNF placement constraints can be for-
mulated as follows:

xfnk ≤ ∑
m:node¼k

ymij ; (28)

xfbk ≤ ∑
m0:node¼k

ym
0

ij ;

8i∈ 1; Sj j½ �; j∈ 1; Fj j½ �; k∈ 1; Nsj j½ �; fb ∈ 1; Fb
�� ��� �

m∈ 1; Eb
�� ��� �

;m0 ∈ 1; Esub
�� ��� � ; (29)

where (28) and (29) represent the relationship between the
primary/backup VNF placement and the routing variables.

4 | ALGORITHM DESIGN

In this section, a novel online algorithm is proposed to pro-
vide off‐site redundancy for reliability‐aware wide area ser-
vice chaining in a dynamic NFV‐enabled scenario. The
objective is to determine an efficient mapping strategy for
each service chain request while satisfying the constraints.
The metric of interest is the service chaining acceptance
ratio, which is defined by the number of accepted service
chaining requests over the total number of service chaining
requests, and the redundancy model is the JP model. Based
on the complexity of the above‐presented MILP, the prob-
lem of finding the optimal mapping plan for one service
chaining request is NP‐Hard [21]. To address this, a novel
online algorithm called Balancing between Cost and Relia-
bility (BCR) is proposed that employs a JP model and a
novel backup selection mechanism to maximum the relia-
bility of each client while simultaneously minimizing the
amount of resources allocated for each online request.
There are two main steps in the BCR algorithm:

i. For primary mapping, find K-shortest paths between
ingress and egress and sort these paths in descending
order based on the communication delay. Then, map pri-
mary VNFs to the sites along the selected path.

ii. For backup mapping, model the backup selection pro-
cess as a Markov Decision Process (MDP). For each
primary VNF encountered along a particular service
chaining, determine whether to provision that VNF with
backups and allocate the appropriate amount of backup
resources for each primary VNF. Then, find the optimal
number of backup VNFs by running the improved Q-
learning algorithm. Finally, find sites at which to locate
each of the redundant VNF instances.

As the primary function of the BCR algorithm is to
determine an optimal backup plan, the second step in

the BCR algorithm is discussed in more detail below.
First, the MDP is applied to model the backup selection
process (Section 4.1). Then, an improved Q‐learning
algorithm is proposed to obtain the optimal solution for
the MDP model. (Section 4.2). Finally, a formulation of
the BCR algorithm is introduced (Section 4.3).

4.1 | Backup selection modeling

Han et al. [22] reported that the MDP model achieves good
performance in making optimal decisions in a dynamic
environment. Therefore, the backup VNFs selection process
is considered as the MDP model. Here, it is assumed that
the backup selection process can be defined as a five‐tuple
{S, A, r, P, J}, where S represents the finite state space
(the basic events in state space S are shown in (30)) and
X(t) represents the primary VNF placement state at time t.
The binary variable Xij (i ∈ [1, m], j ∈ [1, n]) is introduced
to formulate the site assignment of the primary VNFs
(Xij = 1 indicates that nsi is the location of fj; otherwise nsi
is not the location of fj), A represents the finite action
space, and each action vector a ∈ Fb

ij ¼ f 1b ; f
2
b ; . . . ; f

n
b


 �
represents the number of backup instances of the jth VNF
of network service i that has been provisioned to protect
the corresponding chaining. To ensure synchronization
between the primary and backup VNFs, it is necessary for
F ⋂ Fb

ij = Fb
ij and F ⋃ Fb

ij = F. In other words, the
backup VNFs Fb

ij must be a subset of the primary VNFs F
and r represents the set of rewards corresponding to each
vector in the action space. If each pair (s, a) satisfies the
constraints of the MILP model described above, the instant
reward r(s, a) = γUUt − γCCt can be obtained from action
a executed on state s; otherwise, the instant reward can be
defined as the penalty factor r = −1/ξ, where ξ represents
an infinitesimal positive real number. Here, P represents
the state transition probability and J represents the total
revenue donated by ∑T

t¼0rðtÞ. The objective is to select the
optimal action in the MDP that yields the maximum rev-
enue in the processing time.

XðtÞ ¼

X11 � � � X1n

. .
.

..

.
Xij

..

.

. .
.

Xm1 � � � Xmn

0
BBBBBB@

1
CCCCCCA
; XðtÞ∈ S: (30)

4.2 | Find the near‐optimal solution

Wang et al. [23] and Zoph et al. [24] demonstrated that the
Q‐learning algorithm is an effective way to solve the MDP
model. As was mentioned earlier, the BCR algorithm was
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proposed based on the MDP model to obtain the optimal
mapping solution.

During operation, the Q‐learning algorithm interacts
with the surrounding environment. At first, the control sys-
tem selects an action, and then the surrounding environ-
ment gives proper feedback to the agent in the form of
rewards or punishments. The instant reward is used to eval-
uate the pros and cons of the selected action, until the max-
imum reward has been achieved. Finally, the agent arrives
at the optimal solution via trial and error. The Q‐learning
model is a closed‐loop feedback control system, as
depicted in Figure 2.

At time t, the agent reaches the state st+1 after executing
action at on state st. The term r(st, at) can be calculated
from the improvement ratio and management cost, then
Q(s, a) can be updated accordingly. At time t + 1, the
above process is repeatedly iterated to obtain both the opti-
mal action‐value Q*(st, at) and the optimal backup plan π*
(st) = argmax Q*(st, at). In each iteration, the gradient des-
cent method is applied to estimate Q(s, a). Thus, the
action‐value updating rule can be computed as shown in
(31), as long as the optimal action‐value Q*(st, at) satisfy
the Bellman's equation, as shown in (32).

Qðst; atÞ ¼ Qðst; atÞ þ ½αQrðst; atÞ
þ γmax

atþ1
Qðstþ1; atþ1Þ � Qðst; atÞ�; (31)

Q�ðst; atÞ ¼ E½rðst; atÞ þmaxQ�ðstþ1; atþ1Þ�; (32)

where αQ ∈ (0, 1) represents the learning factor and γ ∈ (0, 1)
represents the penalty factor.

As the current network is composed of hundreds of
physical servers, the Q‐learning algorithm will likely
encounter the “Curse of Dimensionality” problem due to
the complicated datacenter network topology [25]. This
problem arises as follows. In each iteration, the size of
Q(s, a) is |S|·|A|, and as the learning cycle increases,
Q(s, a) comes to occupy a large number of storage
resources, which prevents the learning process from

finishing. To solve this problem, a cerebellar model articu-
lation controller (CMAC) neural network is applied to
achieve fast convergence of Q(s, a).

Note that in the backup selection process, there are an
insufficient number of training samples and limited online
trial results. A benefit of the CMAC neural network is that it
can be easily embedded into the controller module, which
allows it to accelerate the generalization of the online learn-
ing. The basic structure of a CMAC neural network is shown
in Figure 3. This type of neural network consists of three
parts, namely, the input, memory, and output, where the
input space S represents m‐discrete state spaces, the memory
layer W represents the storage weight value of n‐discrete
memory addresses, and ynet represents the output of the net-
work. The actual state can be mapped onto the state space S
and each discrete state si can be mapped onto the weights
stored by multiple physical addresses in the memory layer
W. If the different states are in close proximity, the physical
addresses overlap (represented by the shadow in Figure 3);
otherwise, the physical address do not overlap.

Harmon et al. [26] reported that a CMAC neural net-
work achieves good performance in both the convergence
speed and computational complexity. To solve the “Curse
of Dimensionality” problem, the basic Q‐learning algorithm
is extended by the addition of a CMAC neural network, as
shown in Figure 4. At time t, the CMAC‐Q agent obtains
the instant reward r(st, at) after executing action at on state
st. The CMAC neural network can fit Q(s, a) via a table
query based on both the instant reward r(st, at) and the
input (st, at), and then adjusts the weight vectors. With this
process, the learning system is no longer required to store
and update the estimation table of size |S|·|A|, instead, it
only needs to store the weights of the local neurons in the
network. The CMAC neural network is employed for esti-
mating the Q(s, a) of each action. When st = si, the

Current state

Reward r

Action - value function Q (st, at)

(

st

st , at)

Agent

State st+1Action at+1

Action-value function Q(st, at)

Reward r(st,at)

FIGURE 2 Reinforcement learning model
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FIGURE 3 Structure of a cerebellar model articulation controller
neural network
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estimated action‐value function that executes the kth action
is Qk. The gradient descent method is also applied to
update the local weights and obtain the minimum value of
the output error. The update rule for the improved Q‐learn-
ing system is shown in (33):

Qk ¼WT
k Fki ¼ ∑

n

j¼1
ωkifij

Wkðtþ1Þ ¼WktþαW ½rðst;atÞþ γmax
atþ1

QNNðstþ1;atþ1Þ
�QNNðst;atÞ� �Fki;

8>>><
>>>:

(33)

where Wkt represents the weight, Fki represents the activa-
tion state, and αW represents the weight learning rate.

4.3 | Formulation of the BCR algorithm

The proposed availability‐aware SCM algorithm, or the
BCR algorithm is shown in Table 1.

The intent of this algorithm is to overcome the com-
plexity of the formulated MILP. Here, it is assumed that a
network supports a constant number of network services.
Let the number of physical nodes and physical edges be m
and n, respectively. In the first part of the BCR algorithm,
the primary mapping is based on the K‐Dijkstra algorithm
[27], and it is well‐known that this algorithm has a certain
complexity of order O(k(mlogm + n)). The second part of
the proposed algorithm is based on the improved Q‐learn-
ing algorithm, the complexity of which is primarily caused
by updating the weight vectors rather than storing samples.
For an arbitrary sample, the corresponding weight vector
must be updated as per (28). Here, it is assumed that the
number of discrete actions is M and the backup selection
has a complexity of O(M). In the process of finding the
maximum Q*(st, at), the required number of updates is N
and there are kT samples for each primary service path,
where T represents the maximum learning step size. This

Current state

Reward r (

st

st , at)

CMAC-Q agent

CMAC-Q (st, at) approximator

State st+1Action at+1

FIGURE 4 Cerebellar model articulation controller‐Q‐learning
model

TABLE 1 The process flow of the balancing between cost and
reliability algorithm

1 Input: Service Request t and Physical Network Gs

2 Output: Primary Mapping f and Backup Mapping fb

3 for each pair of ingress ni ∈ Ns and egress ne ∈ Ns do

4 The K‐Dijkstra algorithm is used to calculate the k-shortest
path sets from ni to ne, denoted P = {p1, p2, …, pk}

5 Sort P in descending order based on their respective delays,
denoted E

6 end for

7 for each service chaining request t do

8 for each service path pi do

9 Map all VNFs fi ∈F to the data centers along the path e ∈
Esub subject to the function constraints

10 if primary mapping succeeds then

11 Calculate Rt based on (7)

12 if Rt ≥ Θt
req then

13 There is no need to provide backup resources

14 else

15 Initialize state space S, behavioral space A, and
transition probability P according to the primary mapping

16 Ensure the synchronization between primary VNFs and
backup VNFs, F ⋂ Fb

ij ¼ Fb
ij, F ⋃ Fb

ij= F

17 t ← 0, s ← s0

18 while (|QNN(st, at) − max Q (st, at)| ≥ ξ&&t ≤ Max_t) do

19 for each action a ∈ Fb
ij in state space S do

20 step ← 0

21 Calculate QNN(st, at)

22 while (step != Max_t) do

23 dataset ← {st, at, QNN(st, at)}

24 Execute action at to obtain r(st, at), and enter

state st+1

step ← step + 1

25 if rand < 1 − ξ then

26 a* = argmax QNN(st+1, at+1)

27 δ = r(st, at) + QNN(st+1, at+1) − QNN(st, at)

28 else

29 Select at based on π

Q(st, at) = QNN(st+1, at+1) + αWδ

Update dataset

30 end if

31 CMAC neural network starts training

Update weight vector W

32 end while

33 t ← t + 1

34 Update learning factor αW

(Continues)
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process is executed for k cycles, which runs in O(Mk2TN)
time. In summary, the complexity is O(k(mlogm + n) +
Mk2TN) when processing a single online service request.

5 | PERFORMANCE EVALUATION

The performance evaluation focused on the following
aspects: (i) compare the results of the BCR algorithm to the
results of the MILP based solution via the CPLEX tool; (ii)
analyze the performance of the BCR algorithm on the Abil-
ene backbone network topology as per the SNDlib library.
Compare the performance of the proposed solution to that of
the READ and GREP based optimal solutions, which have
already been studied in the literature for reliability‐aware
SCM problems. The proposed algorithm is evaluated in
terms of the service chaining request acceptance ratio, the
backup resources consumed by the requests, and the algo-
rithm run time. Furthermore, all of the simulations were exe-
cuted on a personal computer with a 3.6 GHz dual core
Intel® CoreTM i7 processor and 8 GB RAM. In order to
make the results more accurate, each simulation was run 100
times and the results were averaged.

First, the results of the proposed algorithm are com-
pared to the results of the MILP based solution via the
CPLEX tool used to solve the MILP model. In the simula-
tion, three typical physical networks were generated: (i) a
small network consisting of 10 nodes and five hosted net-
work services, (ii) a medium network consisting of 20
nodes and 10 hosted network services, and (iii) a large net-
work consisting of 40 nodes and 20 hosted services. The
detailed results of this comparison are presented in Table 2.

As indicated in the table, the MILP approach obtained an
objective value when the BCR algorithm could not. This
was because the typical CPLEX tool used to solve the
MILP provided an exact solution, albeit at the expense of
execution time. As the number of physical node increased,
the MILP algorithm fails to obtain the objective value.
Therefore, this algorithm had limited applicability due to
its computational complexity, especially in the cases with a
medium or large network. In contrast, the proposed BCR
algorithm iteratively approached a near‐optimal solution
within a polynomial time and therefore satisfied the execu-
tion time requirement in the large network.

To better evaluate the performance of the BCR algo-
rithm, it was compared to that of the READ and GREP
based optimal solutions, which were previously studied in
the literature for the reliability‐aware SCM problem. The
GT‐ITM tool [28] was used to generate different network
topologies and the BCR algorithm was implemented in
MATLAB. The Abilene backbone network topology pro-
vided by the SNDlib library [29] was used for the topology
dataset (12 nodes, 15 links). As shown in Figure 5, Node
12 was used for egress and the remaining 11 nodes were
used for ingress. In the physical network, it was assumed
that each node can be used as a service‐providing node.

The selected simulation parameters and the correspond-
ing distribution were motivated by simulations and evalua-
tions of a well‐known related reliability‐aware SCM
problem [14]. For the physical network, the delay between
the ingress/egress and their associated datacenter site was
assumed to be randomly in the range of (0, 1] ms. Each
node of the network represents one single data center with
a physical resource capacity, such as CPU, memory, and
storage, between [1,500, 2,500]. If there are 10 types of
functions in the network, each physical node can provide
one to five functions. The mapping cost of each node and
link was fixed to 10 and 5, respectively. The reliability of
each mapped VNF was randomly distributed within [0.9,
0.99]. Each service chaining request consists of different
types of functions, the number of which was randomly

35 end for

36 end while

37 end for

38 end for

39 if Fb
ij ≠ {∅} then

40 Determine the backup plan based on the learning output results

BN ← Fb
ij, select the optimal number of backup VNFs based on

π*(st) = argmax Q*(st, at)

BE ← m, calculate the backup logical links based on
maxQπ(st, at)

41 Use the JP protection model for backup, and map the backup VNFs
and links subject to proposed constraints (15) to (21), thus
forming the backup path from the ingress ni ∈ Ns to the egress
ne ∈ Ns that minimizes the cost while maximizing the reliability

42 Update the topology

43 end if

TABLE 2 MILP vs. BCR

Physical topology Solution
Objective
value

Execution
time

10 nodes, 5 services MILP 0.25 3.2 s

BCR 0.20 1.6 s

20 nodes, 10
services

MILP 0.39 13,279 s

BCR 0.31 1.8 s

40 nodes, 20
services

MILP N/A ∞

BCR 0.48 2.5 s

BCR, balancing between cost and reliability; MILP, mixed integer linear pro-
gramming.
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distributed in range [2, 5]. The instantiated resources
required by each VNF were randomly distributed within
[20, 40] and the bandwidth required by the logical links
was randomly distributed within [5, 10]. The reliability
requirement was selected among {95%, 96%, 97%, 98%,
99%, and 99.9%}, which is similar to those used by Google
Apps [30]. The survival time of each request followed the
exponential distribution and the mean number of life cycles
was 500. In the Q‐learning algorithm, the penalty factor ξ
was fixed to 0.01, the maximum learning training period
Max_t was fixed to 1,500, the maximum learning step size
Max_step was fixed to 1,000, and the initial value of the
learning factor α0 was fixed to 0.8.

To analyze the convergence speed of the improved Q‐
learning algorithm, the dynamic exploration strategy was
compared to the static exploration strategy. In this test, the
controller system must be continuously trained online to
improve the distribution of backup resources and the action
selection strategy was adopted based on the Boltzmann dis-
tribution, in other words, a balance between greedy search
and free search. Thus, the mathematical description of the
action selection strategy π is:

pðat stj Þ ¼ eQðst ;atÞ=Ttemp

∑
a∈A

eQðst ;aÞ=Ttemp
; (34)

where p(at|st) represents the transition probability of action
at executed on the state st, A = {ak|k = 1, 2, …} represents
the optional action set and Ttemp represents the exploration
factor. The improved Q‐learning algorithm gradually
reduces the exploration factor and ultimately tends toward
a greedy search.

The relationship between the cycles and steps in each iter-
ation are shown in Figure 6, where it can be seen that the
curve of the static exploration strategy fluctuates, thus pro-
viding larger errors and output weights to the CMAC neural
network. However, the dynamic exploration strategy is
smoother. This is because the learning system gradually
reduces the exploration factor, which ensures a higher explo-
ration rate in the early stages until finally tends toward a

greedy search. In this way, the algorithm avoids falling into a
local optimal solution and changes the inertia thinking mode
of the agent, thus improving the convergence and generaliza-
tion ability of the Q‐learning system.

A synthetic policy was employed to evaluate the pro-
posed algorithm in terms of the service chaining request
acceptance ratio, the backup resources consumed by
requests, and the running time. The proposed algorithm was
compared to three other mapping algorithms that have been
widely used in the literature. The notations and descriptions
of the different algorithms are listed in Table 3. The results
of these simulations are shown in Figures 7–9. The results
are presented in the following sections.

5.1 | Metric 1: Run time

This is the time required to find primary and backup topol-
ogy mapping for a given traffic batch and network topol-
ogy.

The run time with service arrivals for different backup
algorithms is shown in Figure 7. Toward the end of the
simulation (at about 100 service requests), the run time of
the No‐backup algorithm was 212.1 ms, the running time
of the READ algorithm was 837.1 ms, the running time of
the GREP algorithm was 678.5 ms, and the running time
of the BCR algorithm was 411.5 ms. The results show that
the run time of READ was about four times longer than
that of the No‐backup. This is because the No‐backup only
executes the primary topology mapping, and the run time
is therefore minimal according to the order of O(mλ + m2)
(for details, refer to Bari et al. [31]), where λ represents the
length of the service chain. However, the three other
backup algorithms implement both the primary and backup
topology mappings, thus requiring more time compared to

FIGURE 5 Abilene backbone network topology
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the No‐backup algorithm. Among these, GREP selects two
primary VNF nodes with the lowest reliability in each iter-
ation, and the primary VNF that prioritizes the backup

must wait for the next primary VNF to complete the
backup operation in the cache queue. Therefore, the com-
plexity of GREP is O(mλ) (for details, refer to Fan et al.
[13]). READ can be divided into two steps, namely, the
generation of an initial set of paths and the expansion of
single‐path routes to multi‐path routes together with their
corresponding VNF placement. Thus, the complexity of
READ is O(kn(mlogm + n)) (for details, refer to Long et
al. [11]). Finally, BCR searches for the optimal backup
plan via updating Q(s, a) to the direction of the total rev-
enue J, thus avoiding the need to blindly traverse the entire
state space. The dynamic exploration strategy was also
adopted to select the action, thus speeding up the conver-
gence of Q(s, a). Combined with the analysis presented in
Section 4.3, the curve of each algorithm in Figure 7 is con-
sistent with those of the theoretical analysis.

TABLE 3 Comparison of algorithms

Algorithm Description

READ [11] Reliability‐aware and delay constrained optimization
framework

GREP [13] Guaranteeing reliability with enhanced protection in
network function virtualization

No‐backup
[31]

Reliability‐agnostic SFC mapping scheme.

BCR Balancing between cost and reliability
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5.2 | Metric 2: Request acceptance ratio

This is the ratio of the number of service chains success-
fully deployed on the physical network over the total num-
ber of service chaining requests.

Figure 8 shows the variation of the request acceptance
ratio with service arrivals and Table 4 shows the mean
rejected number of requests that were blocked due to relia-
bility and capacity constraints, respectively. As the number
of arriving requests increases, the amount of available
resources gradually decreases, which may cause the rejec-
tion of more requests. The mean request acceptance ratio
of the No‐backup algorithm was 58.56%, the mean request
acceptance ratio of the READ algorithm was 65.56%, the
mean request acceptance ratio of the GREP algorithm was
69.71%, and the request acceptance ratio of the BCR algo-
rithm was 75.25%. In the experiment, a request can be
accepted if and only if there are enough resources and the
reliability requirement can be satisfied. No‐backup does not
consume backup resources and the number of remaining
physical resources, such as CPU and bandwidth, with this
algorithm is higher than three other algorithms. However, it
is hard to satisfy the reliability constraints with the No‐
backup algorithm, which could possibly lead to the rejec-
tion of service requests. READ investigates the feasibility
of adequately embedding each of these VNFs and selec-
tively provisioning some of them with an adequate number
of backup VNFs that will allow those services to achieve
their respective reliability requirements Rt = 0.95. How-
ever, READ does not include CPU capacity constraints,
thus resulting in more backup resources being wasted and
a lower request acceptance ratio. The performance of
GREP was only slightly worse than BCR, which is because
GREP uses a greedy strategy to select the two least reliable
VNFs for redundancy in each iteration, and can thus satisfy
the reliability requirements while consuming fewer
resources, thereby improving the request acceptance ratio
compared to READ. However, GREP is based on the
greedy algorithm, which easily obtains a local optimal solu-
tion. Finally, it can be seen that BCR has the highest
request acceptance ratio, which is because BCR has a
chance to iteratively obtain the optimal number of backup
VNFs and considers the potential remaining resources
released after the deployed request completes. This makes
the best use of global resources and can lead to receiving

more SFC requests compared to READ and GREP. Based
on the above discussion, the results shown in Table 4 are
consistent the theoretical analysis.

5.3 | Metric 3: Backup resource consumption

This is the number of backup VNFs and backup logical
links. Here, backup links refer to the links connecting the
backup and their associated primary VNFs.

The number of requests in this experiment was 400 and
only accepted requests were considered. The average num-
ber of backup links and backup VNFs used for each relia-
bility‐aware SCM are shown in Figure 9A,B, where it can
be seen that BCR used 32.1% and 22.7% fewer logical
links compared to READ and GREP, respectively, when
the reliability requirement was “three‐nines” or 99.9%.
Similar conclusions can be drawn when comparing the
number of backup VNFs, as shown in Figure 9B. It was
found that the BCR algorithm required 46.7% fewer
backup VNFs compared to READ. As the reliability
requirements increased, BCR saved more backup resources.
This is because the BCR algorithm has advantages in the
redundancy model and backup selection method as it
adopts the JP model and determines the optimal number of
backup VNFs from a global perspective. Therefore, fewer
backup VNFs result in fewer logical links. It was also
found that GREP requires fewer backup VNFs than READ
because READ adopts the shared protection model while
GREP adopts the JP model. Finally, GREP had worse per-
formance than BCR because GREP is based on the greedy
search, which can easily obtain the local optimal solution.
Thus, it consumes more resources than BCR. When com-
bined with the proof in Appendix A, the curve of each
algorithm in Figure 9 is consistent with the theoretical anal-
ysis.

6 | CONCLUSION

Network function virtualization employs virtualization tech-
nologies to offer network‐as‐a‐service capability through
connected VNFs. Since telecom networks must be online at
all times, it is essential to provide efficient and effective
protection and resource allocation schemes to ensure the
reliability of service chaining. In this paper, a novel online
learning algorithm for reliability‐aware SCM is provided
that optimizes the conflicting objectives of management
cost and service reliability without violating the capacity,
delay, and reliability constraints. In addition, the Q‐learning
algorithm was improved in order to select the backup
VNFs. The proposed BCR algorithm was evaluated by way
of extensive simulation and the significant performance
improvement was demonstrated in terms of the service

TABLE 4 Mean rejected number of requests

Algorithm Reliability Capacity

BCR 10 52

GREP 15 61

READ 21 65

No‐backup 92 12
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chaining request ratio, the backup resources consumed by
requests, and the run time. In future work, the proposed
mapping algorithm will be used to intelligently construct
service chains.
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APPENDIX A

In this appendix, it is proven that the JP method mentioned
in Fan et al. [13] can provide higher reliability while con-
suming fewer resources compared to the shared protection
model [11]. For simplicity, assume that one backup can
provide at most two primaries. In the traditional shared
protection model shown in Figure A1A, this approach
saves resources by allocating sb = max{si, sj} resources on
backup VNFb to protect either VNFi or VNFj by connect-
ing the backup to them. However, the network may break
down when both primary VNFs protected by one backup
fail. Therefore, the reliability of service chaining after add-
ing the backup VNF can be characterized as:

RSP ¼ rirj þ rbðð1� rjÞri þ ð1� riÞrjÞ: (A1)

The JP model requires a backup VNF to reserve
resources that are sufficient for all primary VNFs it pro-
tects. As shown in Figure A1B, the amount of backup
resources reserved at VNFb will not be sufficient for either
VNFi or VNFj, in other words, sb = si + sj. However, the
service chain can still function even though both VNFi and
VNFj fail simultaneously. Therefore, the reliability of ser-
vice chaining after adding the backup VNF can be charac-
terized as:

RJP ¼ 1� ð1� rbÞð1� rirjÞ: (A2)

To compare the JP model to the shared protection
model, ΔR can be defined as follows:

VNFi-1 VNFi VNFi+1 VNFj-1 VNFj VNFj+1

VNFb
sb = max(si,sj)
fb = fi+fj

VNFi-1 VNFi VNFi+1 VNFj-1 VNFj VNFj+1

VNFb
sb = si+sj
fb = fi+fj

(A)

(B)

FIGURE A1 (A) Shared protection model and (B) Joint
protection model
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ΔR ¼ RJP � RSP ¼ rbð1� riÞð1� rjÞ:
Then find the partial derivative of ΔR. This provides:

@ΔR
@ri

¼ rbðrj � 1Þ; (A3)

@ΔR
@rj

¼ rbðri � 1Þ: (A4)

To obtain the minimum value of ΔR when ri = rj = 1, let
the (A3) and (A4) be equal to zero. Thus:

ΔR ¼ RJP � RSP ¼ rbð1� riÞð1� rjÞ>0: (A5)

As shown, JP can provide higher reliability while consum-
ing fewer resources compared to the shared protection
model.

APPENDIX B

The symbols and corresponding definitions used in this
paper are listed in Table B1.

TABLE B1 List of symbols and corresponding definitions

Symbol Definition

S The set of network services

F The set of VNF types

Ns The set of physical nodes

Es The set of physical links

Nv The set of primary VNFs

Ev The set of primary logical link

Nb The set of backup VNF

Eb The set of backup links

Gsub The subgraph of Gs

MN(n
s) The available CPU resources of physical node ns

ML(e
s) The available bandwidth of physical link es

c(nv) The requested CPU resources for VNF nv

bw(ev) The requested bandwidth for link ev

μm The experienced hop delay of link m

rj The availability of a VNF

Rt The achieved reliability of an SFC t

di The importance factor of node ns

NCF
(ns)

The connection factor of physical node ns

SF(x) The saturation factor of resource of type x

ψ(x) The stress factor of a resource of type x

Ct The management cost of constructing the service path

m.node The physical node along link m

Fb
ij The set of all redundant instances of the jth VNF of si

xfnk A binary variable that equals 1 if and only if the primary
VNF fn is located on k

ymij A binary variable that equals 1 if and only if link m is
selected by function j of service i

xfbk A binary variable that equals 1 if and only if the backup
VNF fb is located on k

ym
0

fb A binary variable that equals 1 if and only if link m’ is
selected by backup fb

hij A binary variable that equals 1 if and only if the jth VNF
of si is protected by a backup
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