• Title/Summary/Keyword: Damage Resistance

Search Result 1,257, Processing Time 0.021 seconds

A Study on High Temperature Particles-Erosion of Hard Coatings (경질 코팅의 고온 입자침식 현상 연구)

  • 이의열;김종하
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.4
    • /
    • pp.291-295
    • /
    • 2003
  • Many steam turbine components encounter solid particle erosion damage. It has been reported that particle erosion damage is caused by oxide scale exfoliation from boiler tubes. One of the most effective solutions to combat the erosion damage is the application of erosion resistant coatings on the turbine components. In this study, particle erosion resistance for various hard coatings such as nitride, Cr carbide and boride coatings was evaluated under the simulated erosion conditions of steam turbines. Based on the particle erosion tests, the boride coating was found to be more superior to others.

Fire-after-earthquake resistance of steel structures using rotational capacity limits

  • Pantousa, Daphne;Mistakidis, Euripidis
    • Earthquakes and Structures
    • /
    • v.10 no.4
    • /
    • pp.867-891
    • /
    • 2016
  • This paper addresses numerically the behavior of steel structures under Fire-after-Earthquake (FAE) loading. The study is focused on a four-storey library building and takes into account the damage that is induced in structural members due to earthquake. The basic objective is the assessment of both the fire-behavior and the fire-resistance of the structure in the case where the structure is damaged due to earthquake. The combined FAE scenarios involve two different stages: during the first stage, the structure is subjected to the ground motion record, while in the second stage the fire occurs. Different time-acceleration records are examined, each scaled to multiple levels of the Peak Ground Acceleration (PGA) in order to represent more severe earthquakes with lower probability of occurrence. In order to study in a systematic manner the behavior of the structure for the various FAE scenarios, a two-dimensional beam finite element model is developed, using the non-linear finite element analysis code MSC-MARC. The fire resistance of the structure is determined using rotational limits based on the ductility of structural members that are subjected to fire. These limits are temperature dependent and take into account the level of the structural damage at the end of the earthquake and the effect of geometric initial imperfections of structural members.

A Study on the Analysis of Scaling Failure Cause in L-Shoulder Concrete Structure (L형측구 콘크리트 구조물의 표면박리파손 원인분석에 관한 연구)

  • Jeon, Sung Il;Nam, Jeong Hee;Ahn, Sang Hyeok;An, Ji Hwan
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.27-37
    • /
    • 2014
  • PURPOSES : The purpose of this study is to verify the causes of surface scaling at L-shoulder concrete structure. METHODS : From the literature reviews, mechanisms of frost damage were studied and material properties including strength, air void, spacing factor and scaling resistance of L-shoulder concrete structure were analyzed using core specimens taken by real fields. RESULTS : The spacing factor of air void has relatively high correlation of surface conditions : lower spacing factor at good surfacing condition and vice versa. If the compressive strength is high, even thought spacing factor does not reach the threshold value of reasonable durability, the surface scaling resistance shows higher value. Based on these test results, the compressive strength also provide positive effect on the surface scaling resistance. CONCLUSIONS : The main causes of surface scaling of L-shoulder could be summarized as unsuitable aid void amount and poor quality of air void structure. Secondly, although the compressive strength is not the governing factor of durability, but it shows the positive effect on the surface scaling resistance.

Resistance to Chestnut Gall Wasp (Dryocosmus kuriphilus) of Chestnut Cultivars Cultivated in Korea (한국의 밤나무 재배품종에 대한 밤나무혹벌 내충성 검정)

  • Kim, Mahn-Jo;Hwang, Myoung-Soo;Kim, Sun-Chang;Lee, Uk
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.3
    • /
    • pp.295-299
    • /
    • 2007
  • Resistance to chestnut gall wasp (Dryocosmus kuriphilus) of Korean prevailing chestnut cultivars, new cultivars released by Korea Forest Research Institute (KFRI), and local cultivars by growers was investigated to select optimal cultivars suitable for main chestnut producing areas. During three years investigated from 2004 to 2006, we could find no damage by chestnut gall wasp in any cultivars of test sites located in Gongju and Chungju of the central area. However, most cultivars of Gwangyang, Sancheong and Hapcheon sites located in the southern area showed a lot of damage by chestnut gall wasp. Hapcheon was most severe in comparison with regional damage by chestnut gall wasp. From comparison among cultivars, Kwangeun, Sandae, Eunsan and Idae released by KFRI showed no damage suggesting the highest resistant cultivars. On the contrary, over 20% in total damage by chestnut gall wasp was investigated in Tanzawa, Riheiguri, Kurakata-amaguri, Pyeonggi, Gwangdeok, Seil, Sinipyeong and Yumabyuni suggesting susceptible cultivars. In damage by chestnut gall wasp according to investigated position within tree, weak shoot was more severe than bearing shoot. Damage by chestnut gall wasp of major cultivars in Gwangyang, Sancheong and Hapcheon sites was remarkably decreased in 2006, and it seems to be caused by biological control by natural enemies such as Torymus sinensis.

ESTIMATION OF DUCTILE FRACTURE BEHAVIOR INCORPORATING MATERIAL ANISOTROPY

  • Choi, Shin-Beom;Lee, Dock-Jin;Jeong, Jae-Uk;Chang, Yoon-Suk;Kim, Min-Chul;Lee, Bong-Sang
    • Nuclear Engineering and Technology
    • /
    • v.44 no.7
    • /
    • pp.791-798
    • /
    • 2012
  • Since standardized fracture test specimens cannot be easily extracted from in-service components, several alternative fracture toughness test methods have been proposed to characterize the deformation and fracture resistance of materials. One of the more promising alternatives is the local approach employing the SP(Small Punch) testing technique. However, this process has several limitations such as a lack of anisotropic yield potential and tediousness in the damage parameter calibration process. The present paper investigates estimation of ductile fracture resistance(J-R) curve by FE(Finite Element) analyses using an anisotropic damage model and enhanced calibration procedure. In this context, specific tensile tests to quantify plastic strain ratios were carried out and SP test data were obtained from the previous research. Also, damage parameters constituting the Gurson-Tvergaard-Needleman model in conjunction with Hill's 48 yield criterion were calibrated for a typical nuclear reactor material through a genetic algorithm. Finally, the J-R curve of a standard compact tension specimen was predicted by further detailed FE analyses employing the calibrated damage parameters. It showed a lower fracture resistance of the specimen material than that based on the isotropic yield criterion. Therefore, a more realistic J-R curve of a reactor material can be obtained effectively from the proposed methodology by taking into account a reduced load-carrying capacity due to anisotropy.

Evaluation of Mechanical Properties and Damage Sensing of CNT-Polypropylene Composites by Electro-Micromechanical Techniques (CNT-폴리프로필렌 복합재료의 기계적 물성평가 및 전기 미세평가법을 이용한 손상감지)

  • Wang, Zuo-Jia;Kwon, Dong-Jun;Gu, Ga-Young;Kim, Hak-Soo;Kim, Dae-Sik;Lee, Choon-Soo;Park, Joung-Man
    • Composites Research
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • CNT-polypropylene (PP) composites were compounded by solvent dispersion method with uniform dispersion by using twin screw extruder. Damage sensing effects based on conductive carbon nanotubes (CNT) were evaluated to monitor the internal damage of CNT-PP composites using electrical resistance measurement. Mechanical and interfacial properties of CNT-PP composites were investigated and compared with neat PP. The mechanical properties of PP matrix were improved after adding CNT, because of the reinforcing effect of CNT fillers. In order to monitor the internal damage of CNT-PP composite, the change in electrical resistance of the composites was measured under fatigue loading and bending tests. CNT fillers exhibited good sensing under electrical resistance measurements. It is shown that CNT-PP composites with low CNT contents allow identifying critical cyclic loading, which are found to be accompanied with the internal failure.

Fragility Curve of Steel Box Bridge Using RFPB Bearing (RFPB 받침을 사용한 Steel Box 교량의 손상도 곡선)

  • Lee, Jongheon;Seo, Sangmok;Kim, Woonhak
    • Journal of the Society of Disaster Information
    • /
    • v.7 no.3
    • /
    • pp.171-180
    • /
    • 2011
  • As a great earthquake hit east Japan recently, the interests for the necessity of earthquake resistant design and earthquake resistance ability of existent structures are much increased. The damage or collapse of a bridge, as a social overhead capital structure affects socially and economically. Thus the evaluation of earthquake resistance ability of these structures is very important. The reviewing methods for earthquake resistance ability are mostly deterministic. Although the deterministic methods are fit for the evaluation of safety of each member, they are not practical for the whole structure. For the evaluation of structural safety for earthquake, the method for the evaluation of fragility or damage is needed for some stages of damage. In this paper, fragility curves of steel box bridge using RFPB bearing for PGA, PGV, SA, SV, SI are constructed, and these are compared with the cases of FPB.

Relationships Between Soil-Borne Virus Infection and Root Growth Damage in Korean Hulless Barley Cultivars

  • Park, Jong-Chul;Jonson, Gilda;Noh, Tae-Hwan;Park, Chul-Soo;Kang, Chon-Sik;Kim, Mi-Jung;Park, Ki-Hoon;Kim, Hyung-Moo
    • The Plant Pathology Journal
    • /
    • v.25 no.3
    • /
    • pp.231-235
    • /
    • 2009
  • Viral infections and root growth were examined to elucidate the relationship between viral resistance and root growth in 26 Korean hulless barley cultivars. Viral resistance was estimated in experimental filed of Honam agricultural research institute for 3 years. Length and number of seminal and adventitious roots were examined for evaluation of root growth in both field and green-house conditions 30 days after seeding. Dominant viral infection occurred in Korean hulless barley by Barley yellow mosaic virus (BaYMV) in fields; however, susceptible cultivars were infected by either BaYMV, Barley mild mosaic virus (BaMMV) or both. Only four cultivars, including Donghanchalssalbori, Kwangwhalssalbori, Namhossalbori and Naehanssalbori, presented stable resistance to viral infections. Susceptible cultivars to viral infection in fields showed shorter seminal root length and fewer adventitious root number than resistant cultivars. Resistant cultivars showed better root growth and significant difference in adventitious root length in green house conditions. Increase in the number of seminal roots in resistant cultivars was derived from decreased damage of roots by the viral infection compared to the susceptible cultivars.

Interfacial Evaluation and Nondestructive Damage Sensing of Carbon Fiber Reinforced Epoxy-AT-PEI Composites using Micromechanical Test and Electrical Resistance Measurement (Micromechanical 시험법과 전기저항 측정을 이용한 탄소섬유 강화 Epoxy-AT-PEI복합재료의 비파괴적 손상 감지능 및 계면물성 평가)

  • Joung-Man Park;Dae-Sik Kim;Jin-Woo Kong;Minyoung Kim;Wonho Kim
    • Composites Research
    • /
    • v.16 no.2
    • /
    • pp.62-67
    • /
    • 2003
  • Interfacial properties and damage sensing for the carbon fiber/epoxy-amine terminated (AT)-polyetherimide (PEI) composite were performed using microdroplet test and electrical resistance measurements. As AT-PEI content increased, the fracture toughness of epoxy-AT-PEI matrix increased, and interfacial shear strength (IFSS) increased due to the improved fracture toughness by energy absorption mechanisms of AT-PEI phase. The microdroplet in the carbon fiber/neat epoxy composite showed brittle microfailure mode. At 15 phr AT-PEI content ductile microfailure mode appeared because of improved fracture toughness. After curing, the change in electrical resistance $\Delta\textrm{R}$) with increasing AT-PEI content increased gradually because of thermal shrinkage. Under cyclic stress, in the neat epoxy case the reaching time until same stress was faster and their slope was higher than those of 15 phr AT-PEI. The result obtained from electrical resistance measurements under curing process and reversible stress/strain was correspondence well with matrix toughness properties.

Analysis of Electrochemical Corrosion Resistance of Inconel 625 Thermal Spray Coated Fin Tube of Economizer (Inconel 625 용사코팅된 절탄기 핀튜브의 전기화학적 내식성 분석)

  • Park, Il-Cho;Han, Min-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.187-192
    • /
    • 2021
  • In this study, Inconel 625 was used as a thermal spray material to prevent dew point corrosion damage to the economizer tube, and sealing treatment was performed after applying the arc thermal spray coating technology. Various electrochemical experiments were conducted in the 0.5 wt% sulfuric acid solution to analyze the corrosion resistance of the thermal spray coating (TSC) layer. After the anodic polarization experiment, the degree of corrosion damage was determined through a scanning electron microscope and EDS component analysis. When measuring the open circuit potential, the effect of the sealing treatment was confirmed through stable potential formation of the TSC+sealing treatment (TSC+Sealing). As a result of the anodic polarization experiment, the passivation region was confirmed in TSC and TSC+Sealing, and corrosion resistance was improved as no corrosion damage was observed. In addition, the corrosion resistance of TSC+Sealing was the best when analyzing the corrosion potential and corrosion current density calculated by Tafel analysis.