• Title/Summary/Keyword: Damage Assessment

Search Result 1,973, Processing Time 0.102 seconds

Effect of the Anthracnose Resistant Transgenic Chili Pepper on the Arthropod Communities in a Confined Field (야외 격리 포장에서 유전자 변형 탄저병 저항성 PepEST 고추가 절지동물 군집에 미치는 영향)

  • Yi, Hoon-Bok;Kwon, Min-Chul;Park, Ji-Eun;Kim, Chang-Gi;Park, Kee-Woong;Lee, Bum-Kyu;Kim, Hwan-Mook
    • Korean Journal of Environmental Biology
    • /
    • v.25 no.4
    • /
    • pp.326-335
    • /
    • 2007
  • This study was conducted to assess the environmental risks of anthracnose resistant transgenic chili peppers with the PepEST gene on non-target organisms in the agroecosystem environments during the chili pepper growing seasons in 2006. We quantitatively collected arthropods assemblages living on leaves and flowers of chili peppers on June 20, July 25, and August 25 by using an insect vacuum collector to compare the patterns of arthropod community structures between non-transgenic chili peppers (nTR, WT512) and anthracnose resistant transgenic chili peppers (TR, line 68). We found the seasonal difference with the highest species richness and Shannon's diversity in July's sampling among the growing seasons (P<0.05) and each sampling season showed the different arthropod community composition. We also found there was no statistical difference between the two types of crops, nTR and TR, at each sampling time (P>0.05). The significance level of arthropod community showed that there were lots of seasonal difference of functional groups as well as taxa but only the herbivore group in the functional groups was significantly different for the types of plants (P<0.05). So, we further examined the herbivore groups to find any potential damage and identified the possibility of herbivorous damage from some herbivores, grasshoppers, aphids and thrips. Although we couldn't find any adverse effects from the environmental risk assessment between the arthropod community structures on two types of plants from our results, we should keep working for the environmental risk assessment because of the herbivorous potential risk possibility.

Development of a Model for Analylzing and Evaluating the Suitability of Locations for Cooling Center Considering Local Characteristics (지역 특성을 고려한 무더위쉼터의 입지특성 분석 및 평가 모델 개발)

  • Jieun Ryu;Chanjong Bu;Kyungil Lee;Kyeong Doo Cho
    • Journal of Environmental Impact Assessment
    • /
    • v.33 no.4
    • /
    • pp.143-154
    • /
    • 2024
  • Heat waves caused by climate change are rapidly increasing health damage to vulnerable groups, and to prevent this, the national, regional, and local governments are establishing climate crisis adaptation policy. A representative climate crisis adaptation policy to reduce heat wave damage is to expand the number of cooling centers. Because it is highly effective in a short period of time, most metropolitan local governments, except Jeonbuk, include the project as an adaptation policy. However, the criteria for selecting a cooling centers are different depending on the budget and non-budget, so the utilization rate and effectiveness of the cooling centers are all different. Therefore, in this study, we developed logistic regression models that can predict and evaluate areas with a high probability of expanding cooling centers in order to implement adaptation policy in local governments. In Incheon Metropolitan City, which consists of various heat wave-vulnerable environments due to the coexistence of the old city and the new city, a logistic model was developed to predict areas where heat waves can be cooling centered by dividing it into Ganghwa·Ongjin-gun and other regions, taking into account socioeconomic and environmental differences. As a result of the study, the statistical model for the Ganghwa·Ogjin-gun region showed that the higher the ground surface temperature and the more and more the number of elderly people over 65 years old, the higher the possibility of location of cooling centers, and the prediction accuracy was about 80.93%. The developed logistic regression model can predict and evaluate areas with a high potential as cooling centers by considering regional environmental and social characteristics, and is expected to be used for priority selection and management when designating additional cooling centers in the future.

Clinical Analysis of Patients with Abdomen or Neck-penetrating Trauma (복부와 경부 관통상 환자에 대한 임상적 고찰)

  • Noh, Ha-Ny;Kim, Kwang-Min;Park, Joon-Beom;Ryu, Hoon;Bae, Keum-Seok;Kang, Seong-Joon
    • Journal of Trauma and Injury
    • /
    • v.23 no.2
    • /
    • pp.107-112
    • /
    • 2010
  • Purpose: Recently, the change to a more complex social structure has led to an increased frequency of traumas due to violence, accident and so on. In addition, the severity of the traumas and the frequency of penetrating injuries have also increased. Traumas to cervical and abdominal areas, what are commonly seen by general surgeons, can have mild to fatal consequences because in these areas, various organs that are vital to sustaining life are located. The exact location and characteristics of the injury are vital to treating patients with the trauma to these areas. Thus, with this background in mind, we studied, compared, and analyzed clinical manifestations of patients who were admitted to Wonju Christian hospital for penetrating injuries inflicted by themselves or others. Methods: We selected and performed a retrospective study of 64 patients who had been admitted to Wonju Christian Hospital from January 2005 to December 2009 and who had cervical or abdominal penetrating injuries clearly inflicted by themselves or others. Results: There were 51 male (79.7%) and 13 female (20.3%) patients, and the number of male patients was more dominant in this study, having a sex ratio of 3.9 to 1. The range of ages was between 20 and 86 years, and mean age was 43.2 years. There were 5 self-inflicted cervical injuries, and 19 self-inflicted abdominal injuries, making the total number of self-inflicted injury 24. Cervical and abdominal injuries caused by others were found in 11 and 29 patients, respectively. The most common area involved in self-inflicted injuries to the abdomen was the epigastric area, nine cases, and the right-side zone II was the most commonly involved area. On the other hand, in injuries inflicted by others, the left upper quadrant of the abdomen was the most common site of the injury, 14 cases. In the neck, the left-side zone II was the most injured site. In cases of self-inflicted neck injury, jugular vein damage and cervical muscle damage without deep organ injury were observed in two cases each, making them the most common. In cases with abdominal injuries, seven cases had limited abdominal wall injury, making it the most common injury. The most common deep organ injury was small bowel wounds, five cases. In patients with injuries caused by others, six had cervical muscle damage, making it the most common injury found in that area. In the abdomen, small bowel injury was found to be the most common injury, being evidenced in 13 cases. In self-inflicted injuries, a statistical analysis discovered that the total duration of admission and the number of patients admitted to the intensive care unit were significantly shorter and smaller, retrospectively, than in the patient group that had injuries caused by others. No statistically significant difference was found when the injury sequels were compared between the self-inflicted-injury and the injury-inflicted-by-others groups. Conclusion: This study revealed that, in self-inflicted abdominal injuries, injuries limited to the abdominal wall were found to be the most common, and in injuries to the cervical area inflicted by others, injuries restricted to the cervical muscle were found to be the most common. As a whole, the total duration of admission and the ICU admission time were significantly shorter in cases of self-inflicted injury. Especially, in cases of self inflicted injuries, abdominal injuries generally had a limited degree of injury. Thus, in our consideration, accurate injury assessment and an ideal treatment plan are necessary to treat these patients, and minimally invasive equipment, such as laparoscope, should be used. Also, further studies that persistently utilize aggressive surgical observations, such as abdominal ultrasound and computed tomography, for patients with penetrating injuries are needed.

Freeze Risk Assessment for Three Major Peach Growing Areas under the Future Climate Projected by RCP8.5 Emission Scenario (신 기후변화시나리오 RCP 8.5에 근거한 복숭아 주산지 세 곳의 동해위험도 평가)

  • Kim, Soo-Ock;Kim, Dae-Jun;Kim, Jin-Hee;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.3
    • /
    • pp.124-131
    • /
    • 2012
  • This study was carried out to evaluate a possible change in freeze risk for 'Changhowon Hwangdo' peach buds in three major peach growing areas under the future climate projected by RCP8.5 emission scenario. Mean values of the monthly temperature data for the present decade (2000s) and the future decades (2020s, 2050s, 2080s) were extracted for farm lands in Icheon, Chungju, and Yeongcheon-Gyeongsan region at 1km resolution and 30 sets of daily temperature data were generated randomly by a stochastic process for each decade. The daily data were used to calculate a thermal time-based dormancy depth index which is closely related to the cold tolerance of peach buds. Combined with daily minimum temperature, dormancy depth can be used to estimate the potential risk of freezing damage on peach buds. When the freeze risk was calculated daily for the winter period (from 1 November to 15 March) in the present decade, Icheon and Chungju regions had high values across the whole period, but Yeongcheon-Gyeongsan regions had low values from mid-December to the end of January. In the future decades, the frequency of freezing damage would be reduced in all 3 regions and the reduction rate could be as high as 75 to 90% by 2080's. However, the severe class risk (over 80% damage) will not disappear in the future and most occurrences will be limited to December to early January according to the calculation. This phenomenon might be explained by shortened cold hardiness period caused by winter warming as well as sudden cold waves resulting from the higher inter-annual climate variability projected by the RCP8.5 scenario.

Risk Assessment of Pine Tree Dieback in Sogwang-Ri, Uljin (울진 소광리 금강소나무 고사발생 특성 분석 및 위험지역 평가)

  • Kim, Eun-Sook;Lee, Bora;Kim, Jaebeom;Cho, Nanghyun;Lim, Jong-Hwan
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.3
    • /
    • pp.259-270
    • /
    • 2020
  • Extreme weather events, such as heat and drought, have occurred frequently over the past two decades. This has led to continuous reports of cases of forest damage due to physiological stress, not pest damage. In 2014, pine trees were collectively damaged in the forest genetic resources reserve of Sogwang-ri, Uljin, South Korea. An investigation was launched to determine the causes of the dieback, so that a forest management plan could be prepared to deal with the current dieback, and to prevent future damage. This study aimedto 1) understand the topographic and structural characteristics of the area which experienced pine tree dieback, 2) identify the main causes of the dieback, and 3) predict future risk areas through the use of machine-learning techniques. A model for identifying risk areas was developed using 14 explanatory variables, including location, elevation, slope, and age class. When three machine-learning techniques-Decision Tree, Random Forest (RF), and Support Vector Machine (SVM) were applied to the model, RF and SVM showed higher predictability scores, with accuracies over 93%. Our analysis of the variable set showed that the topographical areas most vulnerable to pine dieback were those with high altitudes, high daily solar radiation, and limited water availability. We also found that, when it came to forest stand characteristics, pine trees with high vertical stand densities (5-15 m high) and higher age classes experienced a higher risk of dieback. The RF and SVM models predicted that 9.5% or 115 ha of the Geumgang Pine Forest are at high risk for pine dieback. Our study suggests the need for further investigation into the vulnerable areas of the Geumgang Pine Forest, and also for climate change adaptive forest management steps to protect those areas which remain undamaged.

A Comparison of Single and Multi-matrix Models for Bird Strike Risk Assessment (단일 및 다중 매트릭스 모델의 비교를 통한 항공기-조류 충돌 위험성 평가 모델 분석)

  • Hong, Mi-Jin;Kim, Myun-Sik;Moon, Young-Min;Choi, Jin-Hwan;Lee, Who-Seung;Yoo, Jeong-Chil
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.6
    • /
    • pp.624-635
    • /
    • 2019
  • Bird strike accidents, a collision between aircraft and birds, have been increasing annually due to an increasing number of aircraft operating each year to meet heavier demand for air traffic. As such, many airports have conducted studies to assess and manage bird strike risks effectively by identifying and ranking bird species that can damage aircraft based on the bird strike records. This study was intended to investigate the bird species that were likely to threaten aircraft and compare and discuss the risk of each species estimated by the single-matrix and multi-matrix risk assessment models based on the Integrated Flight Information Service (IFIS) data collected in Gimpo, Gimhae and Jeju Airports in South Korea from 2005 to 2013. We found that there was a difference in the assessment results between the two models. The single-matrix model estimated 2 species and 6 taxa in Gimpo and Gimhae Airports and 2 species and 5 taxa in Jeju Airport to have the risk score above "high," whereas the multi-matrix model estimated 3 species and 5 taxa in Gimpo Airport, 4 species and 5 taxa in Gimhae Airport, and 2 species and 3 taxa in Jeju Airport to have the risk score above "very high." Although both models estimated the similar high-risk species in Gimpo and Gimhae Airports, there was a significant difference in Jeju Airport. Gimpo and Gimhae Airports are near the estuary of a river, which is an excellent habitat for large and heavy waterbirds. On the other hand, Jeju Airport is near the coast and the city center, and small and light bird species are mostly observed. Since collisions with such species have little effect on aircraft fuselage, the impact of common variables between the two models was small, and the additional variables caused a significant difference between the estimation by the two models.

Study on Standardization of the Environmental Impact Evaluation Method of Extremely Low Frequency Magnetic Fields near High Voltage Overhead Transmission Lines (고압 가공송전선로의 극저주파자기장 환경영향평가 방법 표준화에 관한 연구)

  • Park, Sung-Ae;Jung, Joonsig;Choi, Taebong;Jeong, Minjoo;Kim, Bu-Kyung;Lee, Jongchun
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.6
    • /
    • pp.658-673
    • /
    • 2018
  • Social conflicts with extremely low frequency magnetic field(ELF-MF) exposures are expected to exacerbate due to continued increase in electric power demand and construction of high voltage transmission lines(HVTL). However, in current environmental impact assessment(EIA) act, specific guidelines have not been included concretely about EIA of ELF-MF. Therefore, this study conducted a standardization study on EIA method through case analysis, field measurement, and expert consultation of the EIA for the ELF-MF near HVTL which is the main cause of exposures. The status of the EIA of the ELF-MF and the problem to be improved are derived and the EIA method which can solve it is suggested. The main contents of the study is that the physical characteristics of the ELF-MF affected by distance and powerload should be considered at all stages of EIA(survey of the current situation - Prediction of the impacts - preparation of mitigation plan ? post EIA planning). Based on this study, we also suggested the 'Measurement method for extremely low frequency magnetic field on transmission line' and 'Table for extremely low frequency magnetic field measurement record on transmission line'. The results of this study can be applied to the EIA that minimizes the damage and conflict to the construction of transmission line and derives rational measures at the present time when the human hazard to long term exposure of the ELF-MF is unclear.

Disaster Risk Assessment using QRE Assessment Tool in Disaster Cases in Seoul Metropolitan (서울시 재난 사례 QRE 평가도구를 활용한 재난 위험도 평가)

  • Kim, Yong Moon;Lee, Tae Shik
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.1
    • /
    • pp.11-21
    • /
    • 2019
  • This study assessed the risk of disaster by using QRE(Quick Risk Estimation - UNISDR Roll Model City of Basic Evaluation Tool) tools for three natural disasters and sixteen social disasters managed by the Seoul Metropolitan Government. The criteria for selecting 19 disaster types in Seoul are limited to disasters that occur frequently in the past and cause a lot of damage to people and property if they occur. We also considered disasters that are likely to occur in the future. According to the results of the QRE tools for disaster type in Seoul, the most dangerous type of disaster among the Seoul city disasters was "suicide accident" and "deterioration of air quality". Suicide risk is high and it is not easy to take measures against the economic and psychological problems of suicide. This corresponds to the Risk ratings(Likelihood ranking score & Severity rating) "M6". In contrast, disaster types with low risk during the disaster managed by the city of Seoul were analyzed as flooding, water leakage, and water pollution accidents. In the case of floods, there is a high likelihood of disaster such as localized heavy rains and typhoons. However, the city of Seoul has established a comprehensive plan to reduce floods and water every five years. This aspect is considered to be appropriate for disaster prevention preparedness and relatively low disaster risk was analyzed. This corresponds to the disaster Risk ratings(Likelihood ranking score & Severity rating) "VL1". Finally, the QRE tool provides the city's leaders and disaster managers with a quick reference to the risk of a disaster so that decisions can be made faster. In addition, the risk assessment using the QRE tool has helped many aspects such as systematic evaluation of resilience against the city's safety risks, basic data on future investment plans, and disaster response.

A study on the derivation and evaluation of flow duration curve (FDC) using deep learning with a long short-term memory (LSTM) networks and soil water assessment tool (SWAT) (LSTM Networks 딥러닝 기법과 SWAT을 이용한 유량지속곡선 도출 및 평가)

  • Choi, Jung-Ryel;An, Sung-Wook;Choi, Jin-Young;Kim, Byung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1107-1118
    • /
    • 2021
  • Climate change brought on by global warming increased the frequency of flood and drought on the Korean Peninsula, along with the casualties and physical damage resulting therefrom. Preparation and response to these water disasters requires national-level planning for water resource management. In addition, watershed-level management of water resources requires flow duration curves (FDC) derived from continuous data based on long-term observations. Traditionally, in water resource studies, physical rainfall-runoff models are widely used to generate duration curves. However, a number of recent studies explored the use of data-based deep learning techniques for runoff prediction. Physical models produce hydraulically and hydrologically reliable results. However, these models require a high level of understanding and may also take longer to operate. On the other hand, data-based deep-learning techniques offer the benefit if less input data requirement and shorter operation time. However, the relationship between input and output data is processed in a black box, making it impossible to consider hydraulic and hydrological characteristics. This study chose one from each category. For the physical model, this study calculated long-term data without missing data using parameter calibration of the Soil Water Assessment Tool (SWAT), a physical model tested for its applicability in Korea and other countries. The data was used as training data for the Long Short-Term Memory (LSTM) data-based deep learning technique. An anlysis of the time-series data fond that, during the calibration period (2017-18), the Nash-Sutcliffe Efficiency (NSE) and the determinanation coefficient for fit comparison were high at 0.04 and 0.03, respectively, indicating that the SWAT results are superior to the LSTM results. In addition, the annual time-series data from the models were sorted in the descending order, and the resulting flow duration curves were compared with the duration curves based on the observed flow, and the NSE for the SWAT and the LSTM models were 0.95 and 0.91, respectively, and the determination coefficients were 0.96 and 0.92, respectively. The findings indicate that both models yield good performance. Even though the LSTM requires improved simulation accuracy in the low flow sections, the LSTM appears to be widely applicable to calculating flow duration curves for large basins that require longer time for model development and operation due to vast data input, and non-measured basins with insufficient input data.

Impact Assessment of Agricultural Reservoir on Streamflow Simulation Using Semi-distributed Hydrologic Model (준분포형 모형을 이용한 농업용 저수지가 안성천 유역의 유출모의에 미치는 영향 평가)

  • Kim, Bo Kyung;Kim, Byung Sik;Kwon, Hyun Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1B
    • /
    • pp.11-22
    • /
    • 2009
  • Long-term rainfall-runoff modeling is a key element in the Earth's hydrological cycle, and associated with many different aspects such as dam design, drought management, river management flow, reservoir management for water supply, water right permission or coordinate, water quality prediction. In this regard, hydrologists have used the hydrologic models for design criteria, water resources assessment, planning and management as a main tool. Most of rainfall-runoff studies, however, were not carefully performed in terms of considering reservoir effects. In particular, the downstream where is severely affected by reservoir was poorly dealt in modeling rainfall-runoff process. Moreover, the effects can considerably affect overall the rainfallrunoff process. An objective of this study, thus, is to evaluate the impact of reservoir operation on rainfall-runoff process. The proposed approach is applied to Anseong watershed, where is in a mixed rural/urban setting of the area and in Korea, and has been experienced by flood damage due to heavy rainfall. It has been greatly paid attention to the agricultural reservoirs in terms of flood protection in Korea. To further investigate the reservoir effects, a comprehensive assessment for the results are discussed. Results of simulations that included reservoir in the model showed the effect of storage appeared in spring and autumn when rainfall was not concentrated. In periods of heavy rainfall, however, downstream runoff increased in simulations that do not consider reservoir factor. Flow duration curve showed that changes in streamflow depending upon the presence or absence of reservoir factor were particularly noticeable in ninety-five day flow and low flow.