DOI QR코드

DOI QR Code

Development of a Model for Analylzing and Evaluating the Suitability of Locations for Cooling Center Considering Local Characteristics

지역 특성을 고려한 무더위쉼터의 입지특성 분석 및 평가 모델 개발

  • Jieun Ryu (Incheon Carbon Neutrality Center(ICNC), The Incheon Institute) ;
  • Chanjong Bu (Incheon Carbon Neutrality Center(ICNC), The Incheon Institute) ;
  • Kyungil Lee (AI Semiconductor Research Center, Seoul National University of Science and Technology) ;
  • Kyeong Doo Cho (Incheon Carbon Neutrality Center(ICNC), The Incheon Institute)
  • 류지은 (인천연구원 인천탄소중립연구.지원센터) ;
  • 부찬종 (인천연구원 인천탄소중립연구.지원센터) ;
  • 이경일 (서울과학기술대학교 AI반도체연구소) ;
  • 조경두 (인천연구원 인천탄소중립연구.지원센터)
  • Received : 2024.04.09
  • Accepted : 2024.08.22
  • Published : 2024.08.31

Abstract

Heat waves caused by climate change are rapidly increasing health damage to vulnerable groups, and to prevent this, the national, regional, and local governments are establishing climate crisis adaptation policy. A representative climate crisis adaptation policy to reduce heat wave damage is to expand the number of cooling centers. Because it is highly effective in a short period of time, most metropolitan local governments, except Jeonbuk, include the project as an adaptation policy. However, the criteria for selecting a cooling centers are different depending on the budget and non-budget, so the utilization rate and effectiveness of the cooling centers are all different. Therefore, in this study, we developed logistic regression models that can predict and evaluate areas with a high probability of expanding cooling centers in order to implement adaptation policy in local governments. In Incheon Metropolitan City, which consists of various heat wave-vulnerable environments due to the coexistence of the old city and the new city, a logistic model was developed to predict areas where heat waves can be cooling centered by dividing it into Ganghwa·Ongjin-gun and other regions, taking into account socioeconomic and environmental differences. As a result of the study, the statistical model for the Ganghwa·Ogjin-gun region showed that the higher the ground surface temperature and the more and more the number of elderly people over 65 years old, the higher the possibility of location of cooling centers, and the prediction accuracy was about 80.93%. The developed logistic regression model can predict and evaluate areas with a high potential as cooling centers by considering regional environmental and social characteristics, and is expected to be used for priority selection and management when designating additional cooling centers in the future.

기후변화로 인한 폭염은 취약계층의 건강 피해를 급격히 증가시키고 있으며, 이를 예방하기 위하여 국가, 광역, 기초지자체는 기후위기 적응대책을 수립하고 있다. 폭염 피해를 줄이기 위한 대표적인 기후위기 적응대책은 무더위쉼터 개소 수 확대이다. 단기간에 효과가 높아 전라북도를 제외한 대부분의 광역지자체에서는 해당 사업을 적응대책으로 포함하고 있다. 하지만 예산 및 비예산 등에 따라 무더위쉼터로서 선정 기준이 달라 무더위쉼터의 이용률 및 효과가 모두 다르다. 따라서 본 연구에서는 지자체에서 적응대책 이행을 위해 무더위쉼터 확장 시 가능성이 높은 지역을 예측 및 평가할 수 있는 로지스틱 회귀분석 모델을 개발하였다. 원도심과 신도시의 공존 등으로 다양한 폭염 취약 환경으로 구성된 인천광역시를 대상으로 사회·경제적·환경적 차이를 고려하여 강화·옹진군과 이외의 지역으로 구분하여 무더위쉼터 가능 지역을 예측하는 로지스틱 모델을 개발하였다. 연구 결과, 강화·옹진군 지역의 통계 모델에서는 지표면 온도가 높을수록, 65세 이상 고령자수가 많을수록 무더위쉼터 가능성이 높은 것으로 나타났으며, 약 80.93%의 예측 정확도를 나타냈다. 강화·옹진군 이외의 지역에 대해서는 지표면온도가 높을수록, 65세 이상 고령자 수가 많을수록, 30년 이상인 노후 주택으로부터의 거리가 가까울수록, 공공시설로부터의 거리가 가까울수록 무더위쉼터 가능성이 높은 것으로 나타났으며, 약 89.08%의 예측 정확도로 나타났다. 개발된 로지스틱 회귀모형은 지역의 특성을 고려하여 무더위쉼터로서 가능성이 높은 지역을 예측 및 평가할 수 있으며, 추후 무더위쉼터 추가 지정 시 우선순위 선정 및 관리에 활용할 수 있을 것으로 기대한다.

Keywords

Acknowledgement

본 결과물은 환경부의 재원으로 한국환경산업기술원의 신기후체제대응 환경기술개발사업의 지원을 받아 연구되었습니다(RS-2023-00221110).

References

  1. Bae M-K, Kim B-E, Lee C-Y. 2020. Analysis on the spatial relationship between the residential area of the vulnerable groups and the hazardous area during the heat wave. Environmental Policy 28(3): 243-280. [Korean Literature]
  2. Brett L. 2024. Machine Learning with R-Fourth Edition: Learn techniques for building and improving machine learning models, from data preparation to model tuning, evaluation, and working with big data 4th ed. Edition, Acor publishing Co., Ltd.. Printed in Korea. [Korean Literature]
  3. Chae SM, Kim N-S, Yoon S-J. 2016. The effectiveness of connunity public health interventions in alleviating the health impacts of high temperatures. Health and Social Welfare Review 36(3): 179-203. [Korean Literature]
  4. Cho KD, Ryu J, Bu CJ. 2022. Spatial downscaling of population vulnerable to climate change in Incheon Metropolitan City and Policy Utilization Plan. The Incheon Institute, pp. 7-99. [Korean Literature]
  5. Hong SH. 2005. Binomial and multinomial logistic regression. History of Education and Science, pp. 1-141. [Korean Literature]
  6. Incheon Metropolitan City. 2021. The 3rd Incheon Metropolitan City Climate Change Adaptation Measures Detailed Implementation Plan (2022-2026). [Korean Literature]
  7. Japanese Ministry of the Environment (JME). 2011. Health manual of heat stroke, pp. 6-7.
  8. Kang JY, Heo J, Park B-C, Kim K. 2020. A study on Improvement of heat wave adaptation through questionnaire survey on the heat wave congnition in Busan. National Land Research 107: 79-92. [Korean Literature]
  9. Kim D, Park J, Chae Y. 2020. The policy measures to reduce heat-wave3 damage of vulnerable groups in Korea. Environmental Policy 28(2): 6: 211-260. [Korean Literature]
  10. Kim DW, Chung JH, Lee JS, Lee JS. 2014. Characteristics of Heat wave Mortality in Korea. Atmosphere. Korean Meteorological Society 24(2): 225-234. [Korean Literature]
  11. Kim HR, Kim YJ. 2021. Identification of Vulnerability factors for urban floods: Considering social vulnerability of vulnerable groups in Seoul. Journal of Climate Change Research 12(2): 187-202. [Korean Literature]
  12. Kim KW. 2019. There is a need for heat wave measures such as expansion of heat shelters and tropical night shelters considering regional balance. Busan edvelopment institute. [Korean Literature]
  13. Kim, J, Kim H. 2020. Analysis on the Characteristics of Heat Wave Vulnerable Areas Using Landsat 8 Data and Vulnerability Assessment Analysis. Journal of the Korean Geographic Information Society 23(1): 1-14. [Korean Literature]
  14. Lee H, Kim G. 2012. Landslide Risk assessment in Inje using logistic Regresssion model. Journal of the Korean Society of Surveying and Surveying 30(3): 313-321. [Korean Literature]
  15. Lee J-D, Bhang KJ, Han SH. 2012. Relationship analysis between topographic factors and land surface temperature from Landsat 7 ETM+ imagery. Journal of the Korea Contents Association 12(11): 482-491. [Korean Literature]
  16. Lee JH, Wang K. 2013. Green city policy direction considering vulnerable groups. Korea Reseach Institute for Human Settlements 427: 1-6. [Korean Literature]
  17. Lee J-S, Oh M-K. 2019. Distribution analysis of lan surface temperature about seoul using landsat 8 satellite images and AWS data, Journal of the Korea Academia-industrial, Cooperation Society 20(1): 434-439. [Korean Literature]
  18. Lee K, Han TW. 2019. Impact of climate change to the summer season hedging cost in electricity sector: Using a weather derivatives simulation method. Environmental Policy 12: 125-159. [Korean Literature]
  19. Lee K, Lee SJ, Tuvshinjargal N, Lee ES, Lee GG, Jeon SW. 2020. Study on Heat Vulnerability Assessment Using Biotope Map: A Case Study of Suwon Korea. Journal of Climate Change Research 11(6): 629-641. [Korean Literature]
  20. Lee K, Lim CH. 2022. Analysis of the Surface Urban Heat Island Changes according to Urbanization in Sejong City Using Landsat Imagery. Journal of the Korean Society of Remote Sensing 38(3): 225-236. [Korean Literature]
  21. Lee KI, Ryu J, Jeon SW, Jung HC, Kang JY. 2017. Analysis of the effect of heat island on the administrative district unit in Seoul using Landsat image. Korean Journal of Remote Sensing 33(5-3): 821-834. [Korean Literature]
  22. Lee M. 2020. Urban heat wave occurrence status and damage reduction direction. Planning and Policy Brief 466: 15-20. [Korean Literature]
  23. Lee SY, Kwon YS. 2022. Direction of Improvement of Indicators in Heat Wace Sector of The Urban Climate Change Disaster Vulnerability Analysis System. Living Environment 20(3): 1-16. [Korean Literature]
  24. Martinez GS, Imai C, Masumo K. 2011. Local Heat Stroke Prevention Plans in Japan: Characteristics and Elements for Public Health Adaptation to Climate Change. International Journal of Environmental Research and Public Health 8: 4563-4581.
  25. Park JE, Heo BY, S Y. 2016. A Study on Human Damage due to Heat Wave by Region. Journal of the Korean Society of Hazard Mitigation 16(1): 103-109.
  26. Park J-K. 2020. A study on the characteristics of heat wave disaster vulnerability using landsat satellite imagery. Korea Society of Environmental Administration 26(1): 33-38. [Korean Literature]
  27. Park M-H, Kim H. 2021. Effects of heat vulnerability on the distribution of young single-person households in the Seoul Metropolitan area, Journal of Korea Urban Design Society Urban Design 22(3): 41-53. [Korean Literature]
  28. Rhim H, Baek S, Ko Y, Jung N, Choi J. 2023. Optimal Locatino selection for the cooling fog system using Landsat-8 Satellite Images. Journal of the Korean Society of Regional Geography 29(1): 107-116. [Korean Literature]
  29. Ryu J, Bu C, Cho KD. 2023. Incheon metropolitan city climate adaptation priority selection and utilization plan in planning. Journal of Climate Change Research 14(4): 405-423. [Korean Literature]
  30. Seo JW, Ryu DW, Y BW. 2020. Logistic regression analysis considering soil loss and GIS-based urban ground subsidence vulnerability assessment. Tunnel & Underground Space 30(2): 149-163. [Korean Literature]
  31. Song K-W. 2013. Emergency measures for people vulnerable to heat waves. BDI Focus. Busan Development Institute. [Korean Literature]
  32. Hankyung dot com: Another death from heat-related illness occurred during the longest tropical night in history [Internet], Hankyung dot com; [cited 2024 Aug 17]. Available from: https://www.hankyung.com/article/2024081784487