• Title/Summary/Keyword: Dam process

Search Result 294, Processing Time 0.024 seconds

Study on Daeryuk Baekje: Focusing on Literature Research

  • Panjin KIM;Myoung-Kil YOUN
    • Journal of Koreanology Reviews
    • /
    • v.2 no.2
    • /
    • pp.27-34
    • /
    • 2023
  • Purpose: The purpose of this study is to discuss on Daeryuk Baekje (the Continental Baekje), as new researches are beginning to emerge on the existing theory that Baekje exits only in the Korean Peninsula. Research design, data and methodology: We intend to systematically reveal this new theory by carefully examining the early founding process of Baekje, the process of determining its capital city and the ancient documents related to it. Objective analysis and research were conducted through literature research including not only domestic research data but, also research data from overseas. Results: Baekje existed on the Continent and on the Peninsula in the early days of Baekje establishment, before the Kingdom was established, so-called Hanseong Baekje. Conclusion: Biryu and Onjo settled down near Yoseo and Jinpyeong when they first moved to the south from Goguryeo. Biryu led hundred families to Michuhol and established Baekje. Onjo established Sipje at the Wirye Castle with ten of his servants. After Biryu's death the people of Baekje pledge allegiance to Onjo. The Sipje changed its country's name to Baekje. This illustrates that the country was operated with a capital in two regions, in the Continent and the Korean Peninsula. The country was ruled under two royal castles with 22 provincial governments (Dam-ro). Each area was ruled by the royal families and the competent prince among them succeeded to the next throne. It is a unique governing system and illustrates that Baekje existed in the Continent.

Efficiency Analysis of Spiral Structured Twist Screen (식품분말 진동선별기 개선을 위한 구조물 효율 분석)

  • Park, In-soon;Na, En-soo;Jang, Dong-soon;Paek, Young-soo
    • Food Engineering Progress
    • /
    • v.14 no.2
    • /
    • pp.85-91
    • /
    • 2010
  • In the food process, twist screen is widely used to divide particles on the basis of size. As screen equipped in the twist screen perfoms an important part in the particle size distribution mechanism, the contact area of screen and particles, retention time of particles on the screen, mesh and string thickness of screen and the flow pattern of particles on the screen are major points of the separation efficiency. To improve the separation efficiency, increase the retention time and control the flow pattern of particles, screen frame dam and spiral blockage are installed on the sieve of twist screen ${\emptyset}$ 1200 and ${\emptyset}$ 1500. Twist screen ${\emptyset}$ 1500 with frame dam treated similar separation capacity, 37% higher separation ratio and less non-separated particles of product output 1 than general twist screen. Twist screens with frame dam and spiral blockage showed less treatment capacity, three times higher division ratio and entire separation than general twist screen.

Magnetic Sensitivity Improvement of 2-Dimensional Silicon Vertical Hall Device (2 차원 Si 종형 Hall 소자의 자기감도 개선)

  • Ryu, Ji-Goo
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.392-396
    • /
    • 2014
  • The 2-dimensional silicon vertical Hall devices, which are sensitive to X,Y components of the magnetic field parallel to the surface of the chip, are fabricated using a modified bipolar process. It consists of the thin p-layer at Si-$SiO_2$ interface and n-epi layer to improve the sensitivity and influence of interface effect. Experimental samples are a sensor type K with and type J without $p^+$ isolation dam adjacent to the center current electrode. The results for both type show a more high sensitivity than the former's 2-dimensional vertical Hall devices and a good linearity. The measured non-linearity is about 0.8%. The sensitivity of type J and type K are about 66 V/AT and 200 V/AT, respectively. This sensor's behavior can be explained by the similar J-FET model.

Hudraulic Model Test and Numerical Analysis of the Surge Tank (조압수조의 수리모형실험과 수치해석)

  • 노재화;이희영
    • Water for future
    • /
    • v.17 no.1
    • /
    • pp.45-56
    • /
    • 1984
  • The whole process from the model design to the results of the test, of hydraulic model test of restricted entry surge tank of Hapcheon dam, is reviewed with the respect to the flowchart of the experiment. And the experimental results are compared with the numerical values which are calculated by Runge-Kutta-Gill scheme. The comparision show a reasonable agreement. In final design, it doesn't matter that only numerical values are considered in case of the short design period, or difficulties of budget, and or the comparably simple type surge tank as Hapcheon dam.

  • PDF

Development of Real-Time Forecasting and Management System for the Youngsan Estuary Dam (영산강 하구둑 실시간 홍수예보 및 관리시스템 개발)

  • Kang, Min-Goo;Park, Seung-Woo;Her, Young-Gu;Park, Chang-Eun;Kang, Moon-Sung
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.285-288
    • /
    • 2002
  • For real-time flood forecasting and effective control flood at the Youngsan estuary dam, the Flood Forecasting and Control User Interface System II (FFCUS II) has been developed. This paper describes the features and application of FFCUS II. FFCUS II is composed of the database management subsystem, the model subsystem, and the graphic user interface. The database management subsyem collects rainfall data and stream flow data, updates, processes, and searches the data. The model subsystem predicts the inflow hydrograph, the tide, forecasts flood hydrograph, and simulates the release rate from the sluice gates. The graphic user interface subsystem aids the user's decision-making process by displaying the operation results of the database management subsystem and model subsystem.

  • PDF

Variation analysis of Streamflow through partitioning of appropriate subwatersheds and Hydrologic Response Unit(HRU) using BASINS SWAT(Yongdam Dam Watershed) (BASINS SWAT을 이용한 소유역 및 HRU 구분에 따른 유출량 변화 분석(용담댐 유역을 대상으로))

  • Jang, Cheol-Hee;Kim, Hyeon-Joon;Kim, Nam-Won
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.467-470
    • /
    • 2003
  • The size, scale, and number of subwatersheds can affect a watershed modeling process and subsequent results. The objective of this study was to determine the appropriate level of subwatershed division for simulating streamflow. The Soil and Water Assessment Tool(SWAT) model with a GIS interface(BASINS SWAT) was applied to Yongdam Dam watershed. Daily output was analyzed from simulation, which was executed for 10 years using climate data representing the 1987 to 1996 period. The optimal number of subwatersheds and HRUs to adequately predict streamflow was found to be around 15, 174. Increasing the number of subwatersheds and HRUs beyond this level does not significantly affect the computed streamflow. this number of subwatersheds and HRUs can be used to optimize SWAT input data preparation requirements and simplify the interpretation of results without compromising simulation accuracy.

  • PDF

Regional Hydrological Analysis using SLURP Model - Soyanggang-dam watershed - (SLURP 모형을 이용한 광역적 수문분석 - 소양강댐 유역을 대상으로 -)

  • Lim, Hyuk-Jin;Kwon, Hyung-Joong;Jang, Cheol-Hee;Kim, Seong-Joon
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.523-526
    • /
    • 2003
  • This study is to test the applicability of SLURP (Semi-distributed Land Use-based runoff Process) model that is a semi-distributed, continuous hydrologic model developed by Kite (1997). The Soyanggang-dam watershed ($2,694km^2$) was selected. The DEM, land-cover map, monthly NDVI from NOAA/AVHRR and daily meteorological data of 2001 were prepared. By using the parameter optimization technique, SCE-UA (Shuffled Complex Evolution-University of Arizona), the model was calibrated and the Nash-Sutcliffe efficiency was 0.73.

  • PDF

Evaluation of Raingauge Networks in the Soyanggang Dam River Basin (소양강댐 유역의 강우관측망 적정성 평가)

  • Kim, Jae-Bok;Bae, Young-Dae;Park, Bong-Jin;Kim, Jae-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.178-182
    • /
    • 2007
  • In this study, we evaluated current raingauge network of Soyanggang dam region applying spatial-correlation analysis and Entropy theory to recommend an optimized raingauge network. In the process of analysis, correlation distance of raingauge stations is estimated and evaluated via spatial-correlation method and entropy method. From this correlation distances, respective influencing radii of each dataset and each methods is assessed. The result of correlation and entropy analysis has estimated correlation distance of 25.546km and influence radius of 7.206km, deducing a decrease of network density from $224.53km^2$ to $122.47km^2$ which satisfy the recommended minimum densities of $250km^2$ in mountainous regions(WMO, 1994) and an increase of basin coverage from 59.3% to 86.8%. As for the elevation analysis the relative evaluation ratio increased from 0.59(current) to 0.92(optimized) resulting an obvious improvement.

  • PDF

Magnetic Sensitivity Improvement of Silicon Vertical Hall Device (Si 종형 Hall 소자의 자기감도 개선)

  • Ryu, Ji-Goo;Kim, Nam-Ho;Chung, Su-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.260-265
    • /
    • 2011
  • The silicon vertical hall devices are fabricated using a modified bipolar process. It consists of the thin p-layer at Si-$SiO_2$, interface and n-epi layer without $n^+$buried layer to improve the sensitivity and influence of interface effects. Experimental samples are a sensor type I with and type H without p+isolation dam adjacent to the center current electrode. The experimental results for both type show a more high current-related sensitivity than the former's vertical hall devices. The sensitivity of type H and type I are about 150 V/AT and 340 V/AT, respectively. This sensor's behavior can be explained by the similar J-FET model.

Analysis of Water Quality Characteristics According to Short-term Fluctuation of Water Level in the New Dam: Focused on the Upstream Watershed of Yeongju Multipurpose Dam (신규 댐 건설 전후의 수질변동 분석: 영주댐 상류유역을 중심으로)

  • Lee, Saeromi;Park, Jae Roh;Hwang, Tae Mun;Ahn, Chang Hyuk
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.5
    • /
    • pp.431-444
    • /
    • 2020
  • The relationship between dam construction and water quality has recently come to be considered an important issue. A dam is a physical factor which causes changes to the river system around it. Considering these points, this study was conducted to obtain basic data by analyzing the relationship between water level fluctuations and water quality parameters in the short-term. In terms of methodology, the new construction of the Yeongju Dam (M5) in 2016 was divided into Stage 1 as the lotic system and Stage 2 as the lentic system, with four years in each period, and the water level fluctuations and water quality were analyzed using official data. As a result of this study, M5, a stagnant area in which organic matter and nutrients accumulate, was found to be an important factor in water quality management. In addition, the water level changed rapidly (0.9±0.2 m → 10.9±7.1 m) as the river environment condition was converted from the lotic system to the lentic system. In addition, water quality parameters such as BOD, COD, TOC, and Chl-a significantly changed in the short-term. Further, since the transport of organic matter and nutrients occurred well in the lotic system, sedimentation was expected to be dominant in the lentic system. Therefore, it was determined that when the river flow is blocked, autochthonous organic matter is an important factor for long-term water quality management in the future. This process can increase the trophic state of the water body. As a result of this study, the TSIKO value was converted from mesotrophic in Stage 1 to eutrophic in Stage 2. Eventually, short-term changes in the river environment will affect not only changes in water level but also changes in water quality. Thus, a comprehensive and strategic approach is needed for long-term water quality management in the future.