• Title/Summary/Keyword: DT-MOSFET

Search Result 12, Processing Time 0.029 seconds

A Novel 1700V 4H-SiC Double Trench MOSFET Structure for Low Switching Loss (스위칭 손실을 줄인 1700 V 4H-SiC Double Trench MOSFET 구조)

  • Na, Jae-Yeop;Jung, Hang-San;Kim, Kwang-Su
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.15-24
    • /
    • 2021
  • In this paper, 1700 V EPDT (Extended P+ shielding floating gate Double Trench) MOSFET structure, which has a smaller switching time and loss than CDT (Conventional Double Trench) MOSFET, is proposed. The proposed EPDT MOSFET structure extended the P+ shielding area of the source trench in the CDT MOSFET structure and divided the gate into N+ and floating P- polysilicon gate. By comparing the two structures through Sentaurus TCAD simulation, the on-resistance was almost unchanged, but Crss (Gate-Drain Capacitance) decreased by 32.54 % and 65.5 %, when 0 V and 7 V was applied to the gate respectively. Therefore, the switching time and loss were reduced by 45 %, 32.6 % respectively, which shows that switching performance was greatly improved.

Low-area Dual mode DC-DC Buck Converter with IC Protection Circuit (IC 보호회로를 갖는 저면적 Dual mode DC-DC Buck Converter)

  • Lee, Joo-Young
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.586-592
    • /
    • 2014
  • In this paper, high efficiency power management IC(PMIC) with DT-CMOS(Dynamic threshold voltage Complementary MOSFET) switching device is presented. PMIC is controlled PWM control method in order to have high power efficiency at high current level. The DT-CMOS switch with low on-resistance is designed to decrease conduction loss. The control parts in Buck converter, that is, PWM control circuit consist of a saw-tooth generator, a band-gap reference(BGR) circuit, an error amplifier, comparator circuit, compensation circuit, and control block. The saw-tooth generator is made to have 1.2MHz oscillation frequency and full range of output swing from supply voltage(3.3V) to ground. The comparator is designed with two stage OP amplifier. And the error amplifier has 70dB DC gain and $64^{\circ}$ phase margin. DC-DC converter, based on current mode PWM control circuits and low on-resistance switching device, achieved the high efficiency nearly 96% at 100mA output current. And Buck converter is designed along LDO in standby mode which fewer than 1mA for high efficiency. Also, this paper proposes two protection circuit in order to ensure the reliability.

The Design of DC-DC Converter with Green-Power Switch and DT-CMOS Error Amplifier (Green-Power 스위치와 DT-CMOS Error Amplifier를 이용한 DC-DC Converter 설계)

  • Koo, Yong-Seo;Yang, Yil-Suk;Kwak, Jae-Chang
    • Journal of IKEEE
    • /
    • v.14 no.2
    • /
    • pp.90-97
    • /
    • 2010
  • The high efficiency power management IC(PMIC) with DTMOS(Dynamic Threshold voltage MOSFET) switching device and DTMOS Error Amplifier is presented in this paper. PMIC is controlled with PWM control method in order to have high power efficiency at high current level. Dynamic Threshold voltage CMOS(DT-CMOS) with low on-resistance is designed to decrease conduction loss. The control parts in Buck converter, that is, PWM control circuits consist of a saw-tooth generator, a band-gap reference circuit, an DT-CMOS error amplifier and a comparator circuit as a block. the proposed DT-CMOS Error Amplifier has 72dB DC gain and 83.5deg phase margin. also Error Amplifier that use DTMOS more than CMOS showed power consumption decrease of about 30%. DC-DC converter, based on Voltage-mode PWM control circuits and low on-resistance switching device is achieved the high efficiency near 96% at 100mA output current. And DC-DC converter is designed with Low Drop Out regulator(LDO regulator) in stand-by mode which fewer than 1mA for high efficiency.

High Efficiency Buck-Converter with Short Circuit Protection

  • Cho, Han-Hee;Park, Kyeong-Hyeon;Cho, Sang-Woon;Koo, Yong-Seo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.6
    • /
    • pp.425-429
    • /
    • 2014
  • This paper proposes a DC-DC Buck-Converter with DT-CMOS (Dynamic Threshold-voltage MOSFET) Switch. The proposed circuit was evaluated and compared with a CMOS switch by both the circuit and device simulations. The DT-CMOS switch reduced the output ripple and the conduction loss through a low on-resistance. Overall, the proposed circuit showed excellent performance efficiency compared to the converter with conventional CMOS switch. The proposed circuit has switching frequency of 1.2MHz, 3.3V input voltage, 2.5V output voltage, and maximum current of 100mA. In addition, this paper proposes a SCP (Short Circuit Protection) circuit to ensure reliability.

A Study on the Output Filter Design to meet NEMA Standard for a SiC MOSFET Inverter Fed Motor Drive Applications (전동기 구동용 SiC MOSFET 인버터의 NEMA 규격 만족을 위한 출력 필터 구조에 관한 연구)

  • Baek, Seunghoon;Cho, Younghoon;Cho, Byung-Geuk;Hong, Chanook
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.53-54
    • /
    • 2016
  • 본 논문은 전동기 구동용 SiC MOSFET 인버터의 NEMA(National equipment manufacturer's association) 규격 만족을 위한 출력 필터 구조에 따른 영향을 분석한다. 구조와 목적에 따라 정현파 필터와 dv/dt 필터를 적용하여 380V, 60Hz, 3.7kW급 유도 전동기를 대상으로 실험을 수행하여 설계한 필터가 NEMA 규격을 만족시킬 수 있을 뿐만 아니라 전동기 누설전류를 감소시켜 효율까지 향상시킬 수 있음을 확인하였다.

  • PDF

Parallel Operation of a Pair of SITs in order to raise the High Frequency and Power Half-Bridge Inverter (고주파 및 고전력 인버터 적용을 위한 Half-Bridge SIT의 병렬운전 특성고찰)

  • Choi, Sang-Won;Kim, Jin-Pyo;Lee, Jong-Ha
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2234-2236
    • /
    • 1997
  • The SIT, a Static Induction Transistor, is a semiconductor switch that is also called the power junction field-effect transistor (power JFET). Its characteristics are similar to a MOSFET except that its power level is higher and its maximum frequency of operation is lower. The normal method to protect against internal circuit transients of the form of di/dt or dv/dt is the use of snubber circuits. However, the limits of di/dt and dv/dt are high enough for the SIT that it is possible to operate without snubber circuits. SITs can be connected in parallel in order to cope with higher load currents that the value of an individual device rating. The purpose of this study is to investigate the parallel operation of SITs. In this experiment, we used a half-bridge inverter, the output of inverter is up to almost 1MHz and 2kW. Experimental results show that the operation of parallel connected SITs are facilitated individually good current sharing. The reason is the positive temperature coefficient of resistance of the SIT.

  • PDF

A design of the high efficiency PMIC with DT-CMOS switch for portable application (DT-CMOS 스위치를 사용한 휴대기기용 고효율 전원제어부 설계)

  • Ha, Ka-San;Lee, Kang-Yoon;Ha, Jae-Hwan;Ju, Hwan-Kyu;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.13 no.2
    • /
    • pp.208-215
    • /
    • 2009
  • The high efficiency power management IC(PMIC) with DT-CMOS(Dynamic Threshold voltage MOSFET) switching device for portable application is proposed in this paper. Because portable applications need high output voltages and low output voltage, Boost converter and Buck converter are embedded in One-chip. PMIC is controlled with PWM control method in order to have high power efficiency at high current level. DTMOS with low on-resistance is designed to decrease conduction loss. Boost converter and Buck converter, are based on Voltage-mode PWM control circuits and low on-resistance switching device, achieved the high efficiency near 92.1% and 95%, respectively, at 100mA output current. And Step-down DC-DC converter in stand-by mode below 1mA is designed with LDO in order to achive high efficiency.

  • PDF

Advanced Abnormal Over-current Protection with SuperFET® 800V MOSFET in Flyback converter

  • Jang, KyungOun;Lee, Wontae;Baek, Hyeongseok
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.332-333
    • /
    • 2018
  • This paper presents an advanced abnormal over-current protection with $SuperFET^{(R)}$ 800V MOSFET in Flyback converter. In advanced abnormal over-current protection, digital pattern generator is proposed to detect a steep di/dt current condition when secondary rectifier diode or the transformer is shorted. If current sensing signal is larger than current limit during consecutive switching cycle, Gate signal will be stopped for 7 internal switching periods. If the abnormal over-current maintains pattern, the controller goes into protection mode. The Advanced over-current protection has been implemented in a 0.35um BCDMOS process (ON Semiconductor process).

  • PDF

Design of the Driver IC for 500 V Half-bridge Converter using Single Ended Level Shifter with Large Noise Immunity (잡음 내성이 큰 단일 출력 레벨 쉬프터를 이용한 500 V 하프브리지 컨버터용 구동 IC 설계)

  • Park, Hyun-Il;Song, Ki-Nam;Lee, Yong-An;Kim, Hyoung-Woo;Kim, Ki-Hyun;Seo, Kil-Soo;Han, Seok-Bung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.8
    • /
    • pp.719-726
    • /
    • 2008
  • In this paper, we designed driving IC for 500 V resonant half-bridge type power converter, In this single-ended level shifter, chip area and power dissipation was decreased by 50% and 23.5% each compared to the conventional dual-ended level shifter. Also, this newly designed circuit solved the biggest problem of conventional flip-flop type level shifter in which the power MOSFET were turned on simultaneously due to the large dv/dt noise. The proposed high side level shifter included switching noise protection circuit and schmmit trigger to minimize the effect of displacement current flowing through LDMOS of level shifter when power MOSFET is operating. The designing process was proved reasonable by conducting Spectre and PSpice simulation on this circuit using 1${\mu}m$ BCD process parameter.

Short-circuit Protection Circuit Design for SiC MOSFET Using Current Sensing Circuit Based on Rogowski Coil (Rogowski Coil 기반의 전류 센싱 회로를 적용한 SiC MOSFET 단락 보호 회로 설계)

  • Lee, Ju-A;Byun, Jongeun;Ann, Sangjoon;Son, Won-Jin;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.214-221
    • /
    • 2021
  • SiC MOSFETs require a faster and more reliable short-circuit protection circuit than conventional methods due to narrow short-circuit withstand times. Therefore, this research proposes a short-circuit protection circuit using a current-sensing circuit based on Rogowski coil. The method of designing the current-sensing circuit, which is a component of the proposed circuit, is presented first. The integrator and input/output filter that compose the current-sensing circuit are designed to have a wide bandwidth for accurately measuring short-circuit currents with high di/dt. The precision of the designed sensing circuit is verified on a double pulse test (DPT). In addition, the sensing accuracy according to the bandwidth of the filters and the number of turns of the Rogowski coil is analyzed. Next, the entire short-circuit protection circuit with the current-sensing circuit is designed in consideration of the fast short-circuit shutdown time. To verify the performance of this circuit, a short-circuit test is conducted for two cases of short-circuit conditions that can occur in the half-bridge structure. Finally, the short-circuit shutdown time is measured to confirm the suitability of the proposed protection circuit for the SiC MOSFET short-circuit protection.