• Title/Summary/Keyword: DOPC

Search Result 9, Processing Time 0.021 seconds

Photoisomerization of Mixture LB Films of Fatty Acid and Phospholipid(DOPC) (지방산과 인지질(DOPC)의 혼합 LB막의 광이성질화 현상에 관한 연구)

  • Park, Keun-Ho;Shim, Kyoung-Jea;Kim, Nam-Seok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.43-48
    • /
    • 2002
  • We carried out this subject to observe photoisomerization using 1,2-dioleoyl-sn- glycero-3-phosphocholine(DOPC) mixed with fatty acid containing azobenzene group which has reversible to cis-trans by light irradiation. Spreading solutions for the LB films were prepared in chloroform($5.0{\times}10^{-5}$mol/L).We investigated the photoisomerization and property of the organic ultra thin film of fatty acid containing azobenzene was prepared on the hydrophilic ITO(idium tin oxide) glass plate by LB method. As a result, the absorption spectra of 8A5H and DOPC of mixture LB films was induced to photoisomerization by alternating irradiation of ultraviolet and visible light, because the condensation of pure azobenzene monolayers was loosened by the introduction of phospholipid into the monolayers, and the molecular high aggregation in pure azobenzene monolayers is also weakened by the introduction of phospholipid. We found that it was reversibly induced to cis-trans photoisomerization in several solvents and mixture LB films.

Electrochemical Properties and Photoisomerization of DOPC-8A5H Mixture Langmuir-Blogett Films (인지질(DOPC)과 지방산(8A5H)의 혼합 LB막의 광이성질화 현상과 전기화학적 특성)

  • Park, Keun-Ho;Choi, Sung-Hyun;Kim, Nam-Seok;Kim, Duck-Sool
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.874-877
    • /
    • 2004
  • We carried out this subject to observe electrochemical properties of 1,2-dioleoyl-sn- glycero-3-phosphocholine(DOPC) mixed with fatty acid containing azobenzene group by using cyclic voltammetry with a three-electrode system, An Ag/AgCl reference electrode, a platinum wire counter electrode and LB film-coated ITO working electrode in $NaClO_4$ solution. We investigated the photoisomerization and electrochemical property of the organic ultra thin film of fatty acid containing azobenzene was prepared on the hydrophilic ITO(idium tin oxide) glass plate by LB method. As a result, the absorption spectra of BASH and DOPC of mixture LB films was induced to photoisomerization by alternating irradiation of ultraviolet and visible light. A measuring range was reduced from initial potential to -1350mV, continuously oxidized to 1650 mV and measured to the initial point. The scan rate were 50, 100, 150 and 200 mV/s. As a results, LB films of BASH-DMPC appeared reversible process caused by the reduction-oxidation current from the cyclic voltammogram.

  • PDF

MD Simulation Study for Preferred Structure of Glycerol Backbone in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) Molecule According to Solvent Properties (용매 특성에 따른 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) 분자에서 글리세롤 골격 구조에 대한 MD 시뮬레이션 연구)

  • Yang, Ji-yun;Huh, Eugene;Ahn, Ik-sung;Mhin, Byung-jin
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.3
    • /
    • pp.179-184
    • /
    • 2021
  • In this study, the molecular dynamics simulation of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) single molecule was conducted by changing the solvent properties in order to investigate the change in the glycerol backbone structure in phospholipids according to the solvent properties. DOPC has three different conformations according to glycerol C1-C2 bond: A(θ3 = trans, θ4 = gauche), B(θ3 = gauche, θ4 = gauche-), C(θ3 = gauche-, θ4 = trans). Changes in the glycerol backbone structure of the DOPC were examined using the solvent's dielectric constant and surface tension constant as variables. As a result, the population of the B structure increased as the dielectric constant increased. The reason is that the solvation energy of the B structure is larger than that of A. In addition, as the surface tension constant increased, the population of the B structure increased because the surface area of B was smaller than that of A. The results of these studies are expected to be used in the study of phospholipid structure in the future.

A Study on the Stability of DOPC Liposome (염의 농도에 따른 DOPC 리포좀의 안정성에 관한 연구)

  • Won, Doo-Hyun;Kim, Sun-Young;Lim, Gyu-Nam;Park, Soo-Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.37 no.1
    • /
    • pp.55-60
    • /
    • 2011
  • In this study, DOPC liposomes were prepared with distilled water, phosphate buffer and phosphate buffered saline to evaluate the effects of salt on the stability of DOPC liposome. The changes in physical properties (likeparticle size and zeta potential) of liposome were measured after adding the salt. Liposomes were diluted 40 times and 80 times with hydration solvent to confirm the effect of dilution. Consequently, the stability of liposome was maintained up to 40 times dilution with hydration solvent. The liposome that prepared with distilled water was diluted with distilled water, phosphate buffer and phosphate buffered saline, and the liposome that prepared with phosphate buffer was diluted with phosphate buffer and phosphate buffered saline to evaluate the salt-induced changes in particle size and zeta potentia. As results, the particle size increased slightly and zeta potential became closer to 0 when the salt concentration was increased. In conclusion, particle size and zeta potential of liposome could be reasonable factors to evaluate the stability of liposome. In addition, we suggest that salt concentration of hydration solvent has a significant effect on the stability of liposome.

New pH-Sensitive Liposomes Using Bis(6-hemisuccinyloxyhexyl) Fumarate

  • 진지영;이윤식
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.6
    • /
    • pp.645-649
    • /
    • 1998
  • In order to develop pH-sensitive liposomes that are stable in plasma, liposomes containing membrane-spanning bipolar amphiphiles as protonatable components were studied. Sonicated small unilamellar liposomes composed of dioleoylphosphatidylethanol amine (DOPE), dioleoylphosphatidylcholine (DOPC) and bis(6-hemisuccinyloxyhexyl) fumarate (BHF) in a 3 : 1 : 1 molar ratio are stable at neutral pH, but destabilized at weakly acidic pH with 50% leakage of entrapped materials at about pH 5.5. The liposomes are relatively stable in plasma such that only a few percent entrapped calcein was released in 50% plasma within 1.5 h incubation at 37 ℃, while about 10% entrapped calcein was released from sonicated liposomes composed of DOPE, DOPC, and oleic acid (OA) in a 3 : 1 : 1 molar ratio under the identical conditions. The aqueous contents mixing and lipid components mixing experiments suggest that the protonation of BHF may induce fusion between the liposomes, followed by the release of the entrapped materials.

A Study on the Synthesis and Characterization of Polymerizable Bolaamphiphiles (중합성 Bolaamphiphile 분자의 합성과 특성에 관한 연구)

  • Jin, Ji Young;Ko, Seuk-Beum;Jeong, Myung Hee;Choi, Kyoung Hee;Lee, Youn-Sik
    • Applied Chemistry for Engineering
    • /
    • v.8 no.1
    • /
    • pp.59-66
    • /
    • 1997
  • Di(10-hemisuccinyloxy)decyl muconate(DDM) and di(6-hemisuccinyloxy)hexyl muconate(DHM) were synthesized, and showed a phase transition in an aqueous solution at 97 and $79^{\circ}C$, respectively. They did not form liposomes by themselves or even in the presence of cholesterol or dioleoylphosphatidylethanolamine(DOPE), but did form liposomes when they were mixed with phosphatidylcholine(PC). DHM molecules in liposome membranes were readily polymerized via 1,2-polymerization process on exposure to 254nm. Liposomes composed of DOPE/dioleoylphosphatidylcholine(DOPC)/DHM(3/3/1) were stable at neutral pH, but leaky at weakly acidic pH. The leakage of entrapped calcein from liposomes in phosphate-buffered saline (PBS, $37^{\circ}C$) of pH 4.8 and 5.8 was complete within 30 and 50 min, respectively. The release of toke entrapped calcein was increased with decreasing pH such that 50% and 100% of the calcein were released at pH near 5.5 and 5.0, respectively.

  • PDF

Photochemical/Biophysical Properties of Proteorhodopsin and Anabaena Sensory Rhodopsin in Various Physical Environments (막 단백질인 Proteorhodopsin과 Anabaena Sensory Rhodopsin의 다양한 측정 환경에 따른 광화학/생물리학적 특성)

  • Choi, Ah-Reum;Han, Song-I;Chung, Young-Ho;Jung, Kwang-Hwan
    • Korean Journal of Microbiology
    • /
    • v.47 no.1
    • /
    • pp.22-29
    • /
    • 2011
  • Rhodopsin is a membrane protein with seven transmembrane region which contains a retinal as its chromophore. Although there have been recently reports on various photo-biochemical features of rhodopsins by a wide range of purifying and measurement methods, there was no actual comparison related to the difference of biochemical characteristics according to their physical environment of rhodopsins. First, proteorhodopsin (PR) was found in marine proteobacteria whose function is known for pumping proton using light energy. Second one is Anabaena sensory rhodopsin (Nostoc sp.) PCC7120 (ASR) which belongs to eubacteria acts as sensory regulator since it is co-expressed with transducer 14 kDa in an operon. In this study, we applied two types of rhodopsins (PR and ASR) to various environmental conditions such as in Escherichia coli membranes, membrane in acrylamide gel, in DDM (n-dodecyl-${\beta}$-D-maltopyranoside), OG (octyl-${\beta}$-D-glucopyranoside), and reconstituted with DOPC (1,2-didecanoyl-sn-glycero-3-phosphocholine). According to the light-induced difference spectroscopy, rhodopsins in 0.02% DDM clearly showed photointermediates like M, and O states which respond to the different wavelengths, respectively and showed the best signal/noise ratio. The laser-induced difference spectra showed the fast formation and decay rate of photointermediates in the DDM solubilized samples than gel encapsulated rhodopsin. Each of rhodopsins seemed to be adapted to its surrounding environment.

Physicochemical Properties of Phosphatidylcholine (PC) Monolayers with Different Alkyl Chains, at the Air/Water Interface

  • Yun, Hee-Jung;Choi, Young-Wook;Kim, Nam-Jeong;Sohn, Dae-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.377-383
    • /
    • 2003
  • Physicochemical properties of a series of PC monolayers with different alkyl chains (C24, C20, C16, and C8), at the air/water interface were investigated. The surface pressure is influenced mainly by the hydrophobicity of the PCs, which is confirmed by the curve shape and the on-set value of π-A isotherms at the air/water interface by increasing the number of alkyl chain. The on-set values of surface pressure were 125 Ų/molecule for DOPC(C8), 87 Ų/molecule for DPPC(C16), 75 Ų/molecule for DAPC(C20), and 55 Ų/molecule for DLPC(C24), respectively. The orientations of alkyl chains at the air/water interface are closely connected with the rigidity of the monolayers, and it was confirmed by the tendency of monolayer thickness in ellipsometry data. The temperature dependence of a series of PCs shows that the surface pressure decreases by increasing temperature, because the longer the alkyl chain length, the larger the hydrophobic interaction in surface pressure. The temperature effects and the conformational changes of unsaturated and saturated PCs were confirmed by the computer simulation study of the cis-trans transition with POPC and DPPC(C16). The cistrans conformational energy difference of POPC is 62.06 kcal/mol and that of DPPC(C16) is 6.75 kcal/mol. Due to the high conformational energy barrier of POPC, phase transition of POPC is limited in comparison with DPPC(C16).

Use of Bacteriocin Produced by Lactococcus sp. CU216 with pH Sensitive Liposome Entrapment (Lactococcus sp. CU216이 생산하는 박테리오신을 함유한 pH Sensitive Liposome의 응용)

  • 박성수;김명희;한경식;오세종
    • Food Science of Animal Resources
    • /
    • v.24 no.1
    • /
    • pp.97-102
    • /
    • 2004
  • The objective of this study was to control Kimchi fermentation using pH sensitive bacteriocin entrapping liposome(bacteriocin-liposome). The liposomes were prepared by the reverse-phase evaporation method from a mixture of DPPC(dipalmitoyl phosphatidylcholine, DPPE(dipalmitoyl phosphatidylethanolamine), DOPC(dioleoyl phosphatidylcholine) and cholesterol in a molar ration of 4:2:1:4. The bacteriocin-liposome was disruptured at pH 4 of buffer and was stable at alkaline pHs(6 and 7). Irrespective of the addition of the bacteriocin-liposomes, the pH of every Kimchi sample decreased to 5 during 5 days storage at 5$^{\circ}C$. Kimchi samples treated with bacteriocin-liposomes maintained pH 4 or higher, while Kimchi samples not treated with bacteriocin-liposomes exhibited pH 3.58 or lower. In general, the pH of Kimchi samples stored at 20$^{\circ}C$ decreased faster, compared to that of Kimchi samples stored at 5$^{\circ}C$. The pH of Kimchi samples treated with the bacteriocin-liposomes was 3.9 during 90 days storage, while that of the samples not treated with the bacteriocin-liposomes was 3.68 and 3.32 during 30 days and 90 days storages, respectively. Lactic acid bacteria in Kimchi treated with the bacteriocin-liposome grew relatively slow at 5$^{\circ}C$. The viable cell number of lactic acid bacteria increased up to 4${\times}$10$\^$7/ cells/ml and then decreased to 8${\times}$10$\^$6/ cells/ml during 90 days storage at 5$^{\circ}C$.