Browse > Article

Photochemical/Biophysical Properties of Proteorhodopsin and Anabaena Sensory Rhodopsin in Various Physical Environments  

Choi, Ah-Reum (Department of Life Science and Institute of Biological Interfaces, Sogang University)
Han, Song-I (Department of Life Science and Institute of Biological Interfaces, Sogang University)
Chung, Young-Ho (Division of Life Sciences, Korea Basic Science Institute)
Jung, Kwang-Hwan (Department of Life Science and Institute of Biological Interfaces, Sogang University)
Publication Information
Korean Journal of Microbiology / v.47, no.1, 2011 , pp. 22-29 More about this Journal
Abstract
Rhodopsin is a membrane protein with seven transmembrane region which contains a retinal as its chromophore. Although there have been recently reports on various photo-biochemical features of rhodopsins by a wide range of purifying and measurement methods, there was no actual comparison related to the difference of biochemical characteristics according to their physical environment of rhodopsins. First, proteorhodopsin (PR) was found in marine proteobacteria whose function is known for pumping proton using light energy. Second one is Anabaena sensory rhodopsin (Nostoc sp.) PCC7120 (ASR) which belongs to eubacteria acts as sensory regulator since it is co-expressed with transducer 14 kDa in an operon. In this study, we applied two types of rhodopsins (PR and ASR) to various environmental conditions such as in Escherichia coli membranes, membrane in acrylamide gel, in DDM (n-dodecyl-${\beta}$-D-maltopyranoside), OG (octyl-${\beta}$-D-glucopyranoside), and reconstituted with DOPC (1,2-didecanoyl-sn-glycero-3-phosphocholine). According to the light-induced difference spectroscopy, rhodopsins in 0.02% DDM clearly showed photointermediates like M, and O states which respond to the different wavelengths, respectively and showed the best signal/noise ratio. The laser-induced difference spectra showed the fast formation and decay rate of photointermediates in the DDM solubilized samples than gel encapsulated rhodopsin. Each of rhodopsins seemed to be adapted to its surrounding environment.
Keywords
absorption spectrum; membrane protein; photocycle; photoreceptor;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Beja, O., E.N. Spudich, J.L. Spudich, M. Leclerc, and E.F. DeLong. 2001. Proteorhodopsin phototrophy in the ocean. Nature 411, 786-789.   DOI   ScienceOn
2 Bogomolni, R.A. and J.L. Spudich. 1982. Identification of a third rhodopsin-like pigment in photoactic Halobacterium halobium. Proc. Natl. Acad. Sci. USA 79, 4308-4312.   DOI   ScienceOn
3 Brown, L.S. 2004. Fungal rhodopsins and opsin-related proteins: eukaryotic homologues of bacteriorhodopsin with unknown functions. Photochem. Photobiol. Sci. 3, 555-565.   DOI   ScienceOn
4 Choi, A.R., S.Y. Kim, S.R. Yoon, K. Bae, and K.H. Jung. 2007. Substitution of Pro206 and Ser86 residues in the retinal binding pocket of Anabaena sensory rhodopsin is not sufficient for proton pumping function. J. Microbiol. Biotechnol. 17, 138-145.
5 Choi, A.R., S.Y. Kim, S.R. Yoon, and K.H. Jung. 2005. Glu-56 in HtrI is critical for phototaxis signaling in Halobacterium salinarum. Intergrative Biosciences 9, 139-144.   DOI
6 Jung, J.Y., A.R. Choi, Y.K. Lee, H.K. Lee, and K.H. Jung. 2008. Spectroscopic and photochemical analysis of proteorhodopsin variants from the surface of the Arctic ocean. FEBS 582, 1679-1684.   DOI   ScienceOn
7 Jung, K.H. 2007. The distinct signaling mechanism of microbial sensory rhodopsins in Archaea, Eubacteria and Eukarya. Photochem. Photobiol. 83, 63-69.   DOI   ScienceOn
8 Kim, S.Y., S.A. Waschuk, L.S. Brown, and K.H. Jung. 2008. Screening and characterization of proteorhodopsin color-tuning mutations in Escherichia coli with endogenous retinal synthesis. BBA. 1777, 504-513.   DOI   ScienceOn
9 Jung, K.H., V.D. Trivedi, and J.L. Spudich. 2003. Demonstration of a sensory rhodopsin in eubacteria. Mol. Microbiol. 47, 1513- 1522.   DOI   ScienceOn
10 Kawanabe, A., Y. Furutani, K.H. Jung, and H. Kandori. 2007. Photochromism of Anabaena sensory rhodopsin. J. Am. Chem. Soc. 129, 8644-8649.   DOI   ScienceOn
11 Matsuno-Yagi, A. and Y. Mukohata. 1977. Two possible roles of bacteriorhodopsin: a comparative study of strains of Halobacterium halobium differing in pigmentation. Biochem. Biophys. Res. Comm. 78, 237-243.   DOI   ScienceOn
12 Mylene, M.R.M., A.R. Choi, L. Shi, A.G. Bezerra, Jr., K.H. Jung, and L.S. Brown. 2009. The photocycle and proton translocation pathway in a cyanobacterial ion-pumping rhodopsin. Biophys. J. 96, 1471-1481.   DOI   ScienceOn
13 Oesterhelt, D. and W. Stoechenius. 1973. Functions of a new photoreceptor membrane. Proc. Natl. Acad. Sci. USA 70, 2853- 2857.   DOI   ScienceOn
14 Ovichinnilov, YuA. 1982. Rhodopsin and bacteriorhodopsin: structure-function relations. FEBS Lett. 148, 179-191.   DOI   ScienceOn
15 Spudich, J.L. and K.H. Jung. 2005. Microbial rhodopsin: phylogenetic and functional diversity, Handbook of Photosensory Receptros, pp. 1-24. In W.R. Briggs and J.L. Spudich (eds.), Wiley-VCH.
16 Sehobert, B. and J.K. Lanyi. 1982. Halorhodopsin is a lightdriven chloride pump. J. Biol. Chem. 257, 10306-10313.
17 Shi, L., S.R. Yoon, A.G. Bezerra Jr., K.H. Jung, and L.S. Brown. 2006. Cytoplasmic shuttling of protons in anabaena sensory rhodopsin: implications for signaling mechanism. J. Mol. Biol. 358, 686-700.   DOI   ScienceOn
18 Spudich, E.N. and J.L. Spudich. 1982. Control of transmembrane ion fluxes to select halorhodopsin-deficient and other energytransduction mutants of Halobacterium halobium. Proc. Natl. Acad. Sci. USA 79, 4308-4312.   DOI   ScienceOn
19 Spudich, J.L., C.S. Yang, K.H. Jung, and E.N. Spudich. 2000. Retinylidene proteins: structures and functions from archaea to humans. Annu. Rev. Cell Dev. Biol. 16, 365-392.   DOI   ScienceOn
20 Takahashi, T., Y. Mochizuki, N. Kamo, and Y. Kobatake. 1985. Evidence that the long-lifetime photointermediate of s-rhodopsin is a receptor for negative phototaxis in Halobacterium halobium. Biochem. Biophys. Res. Commun. 127, 99-105.   DOI   ScienceOn