Browse > Article
http://dx.doi.org/10.5012/jkcs.2021.65.3.179

MD Simulation Study for Preferred Structure of Glycerol Backbone in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) Molecule According to Solvent Properties  

Yang, Ji-yun (Department of Chemical and Biomolecular Engineering, Yonsei University)
Huh, Eugene (Department of Chemical and Biomolecular Engineering, Yonsei University)
Ahn, Ik-sung (Department of Chemical and Biomolecular Engineering, Yonsei University)
Mhin, Byung-jin (Department of Chemistry, Paichai University)
Publication Information
Abstract
In this study, the molecular dynamics simulation of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) single molecule was conducted by changing the solvent properties in order to investigate the change in the glycerol backbone structure in phospholipids according to the solvent properties. DOPC has three different conformations according to glycerol C1-C2 bond: A(θ3 = trans, θ4 = gauche), B(θ3 = gauche, θ4 = gauche-), C(θ3 = gauche-, θ4 = trans). Changes in the glycerol backbone structure of the DOPC were examined using the solvent's dielectric constant and surface tension constant as variables. As a result, the population of the B structure increased as the dielectric constant increased. The reason is that the solvation energy of the B structure is larger than that of A. In addition, as the surface tension constant increased, the population of the B structure increased because the surface area of B was smaller than that of A. The results of these studies are expected to be used in the study of phospholipid structure in the future.
Keywords
Molecular dynamics; Phospholipid; Dielectric constant; Surface tension; Glycerol backbone;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gunstone, F. D. Phospholipid technology and applications; Elsevier: 2008.
2 Li, J.; Wang, X.; Zhang, T.; Wang, C.; Huang, Z.; Luo, X.; Deng, Y. Asian Journal of Pharmaceutical Sciences 2015, 10, 81.   DOI
3 Lichtenberg, D.; Robson, R. J.; Dennis, E. A. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes 1983, 737, 285.   DOI
4 Lea, C.; Rhodes, D.; Stoli, R. Biochemical Journal 1955, 60, 353.   DOI
5 Kass, G. S. Water Soluble Lecithin Composition; Google Patents: 1979.
6 Hanahan, D. J. A Guide To Phospholipid Chemistry; Oxford University Press on Demand: 1997.
7 Lyubartsev, A. P.; Rabinovich, A. L. Soft Matter 2011, 7, 25.   DOI
8 Orsi, M.; Sanderson, W.; Essex, J. W. Molecular Interactions: Bringing Chemistry to Life; 2007; pp. 185-205.
9 Yu, Z.-W.; Quinn, P. J. Biophysical Chemistry 1998, 70, 35.   DOI
10 Siani, P.; de Souza, R.; Dias, L.; Itri, R.; Khandelia, H. Biochimica et Biophysica Acta (BBA)-Biomembranes 2016, 1858, 2498.   DOI
11 Case, D. A.; Ben-Shalom, I. Y.; Brozell, S. R.; Cerutti, D. S.; Cheatham, T., III; Cruzeiro, V. W. D.; Darden, T. A.; Duke, R. E.; Ghoreishi, D.; Gilson, M. K.; Gohlke, H.; Goetz, A. W.; Greene, D.; Harris, R.; Homeyer, N.; Huang, Y.; Izadi, S.; Kovalenko, A.; Kurtzman, T.; Lee, T. S.; LeGrand, S.; Li, P.; Lin, C.; Liu, J.; Luchko, T.; Luo, R.; Mermelstein, D. J.; Merz, K. M.; Miao, Y.; Monard, G.; Nguyen, C.; Nguyen, H.; Omelyan, I.; Onufriev, A.; Pan, F.; Qi, R.; Roe, D. R.; Roitberg, A.; Sagui, C.; Schott-Verdugo, S.; Shen, J.; Simmerling, C. L.; Smith, J.; Salomon-Ferrer, R.; Swails, J.; Walker, R. C.; Wang, J.; Wei, H.; Wolf, R. M.; Wu, X.; Xiao, L.; York, D. M.; Kollman, P. A. AMBER 2018, 2018.
12 Grasso, G.; Muscat, S.; Rebella, M.; Morbiducci, U.; Audenino, A.; Danani, A.; Deriu, M. A. Journal of Biomechanics 2018, 73, 137.   DOI
13 Shahane, G.; Ding, W.; Palaiokostas, M.; Orsi, M. Journal of Molecular Modeling 2019, 25, 76.   DOI
14 Piggot, T. J.; Pineiro, A. N.; Khalid, S. Journal of Chemical Theory and Computation 2012, 8, 4593.   DOI
15 Ollila, O. S.; Vattulainen, I. Molecular Simulations and Biomembranes: from Biophysics to Function 2010, 20, 26.   DOI
16 Bursing, H.; Ouw, D.; Kundu, S.; Vohringer, P. Physical Chemistry Chemical Physics 2001, 3, 2378.   DOI
17 Tieleman, D. P.; Marrink, S.-J.; Berendsen, H. J. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes 1997, 1331, 235.   DOI
18 Jurkiewicz, P.; Sykora, J.; Humpolickova, J.; Hof, M. Journal of Fluorescence 2005, 15, 883.   DOI
19 Bangham, A. Annual Review of Biochemistry 1972, 41, 753.   DOI
20 Landin, J.; Pascher, I.; Cremer, D. The Journal of Physical Chemistry A 1997, 101, 2996.   DOI
21 Arora, A.; Gupta, C. M. Biochimica et Biophysica Acta (BBA)-Biomembranes 1997, 1324, 47.   DOI
22 Hauser, H.; Pascher, I.; Sundell, S. Journal of Molecular Biology 1980, 137, 249.   DOI
23 Strenk, L.; Westerman, P.; Doane, J. Biophysical Journal 1985, 48, 765.   DOI
24 Kolarovic, L.; Fournier, N. C. Analytical Biochemistry 1986, 156, 244.   DOI
25 Shum, H. C.; Lee, D.; Yoon, I.; Kodger, T.; Weitz, D. A. Langmuir 2008, 24, 7651.   DOI
26 Dickson, C. J.; Madej, B. D.; Skjevik, A. A.; Betz, R. M.; Teigen, K.; Gould, I. R.; Walker, R. C. Journal of Chemical Theory and Computation 2014, 10, 865.   DOI
27 Hawkins, G. D.; Cramer, C. J.; Truhlar, D. G. The Journal of Physical Chemistry 1996, 100, 19824.   DOI
28 Weiser, J.; Shenkin, P. S.; Still, W. C. Journal of Computational Chemistry 1999, 20, 217.   DOI
29 Saunders, R. D.; Horrocks, L. A. Analytical Biochemistry 1984, 143, 71.   DOI