DOI QR코드

DOI QR Code

염의 농도에 따른 DOPC 리포좀의 안정성에 관한 연구

A Study on the Stability of DOPC Liposome

  • 원두현 (서울과학기술대학교 자연생명과학대학 정밀화학과) ;
  • 김선영 (서울과학기술대학교 자연생명과학대학 정밀화학과) ;
  • 임규남 (서울과학기술대학교 자연생명과학대학 정밀화학과) ;
  • 박수남 (서울과학기술대학교 자연생명과학대학 정밀화학과)
  • Won, Doo-Hyun (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Science and Technology) ;
  • Kim, Sun-Young (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Science and Technology) ;
  • Lim, Gyu-Nam (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Science and Technology) ;
  • Park, Soo-Nam (Department of Fine Chemistry, Colleger of Nature and Life Science, Seoul National University of Science and Technology)
  • 투고 : 2011.03.14
  • 심사 : 2011.03.20
  • 발행 : 2011.03.31

초록

본 연구에서는 DOPC 리포좀의 안정성에 대한 염의 영향을 알아보기 위하여 증류수, phosphate buffer, 그리고 phosphate bufferd saline으로 리포좀을 제조하였다. 그리고 염의 추가에 따른 리포좀의 입자크기 및 제타전위 등 기본적인 물성 변화를 확인하였다. 그에 앞서 희석에 대한 영향을 알아보고자 리포좀을 각각 제조시 용매로 40배와 80배로 희석하였고 그 결과 같은 용매로 희석시킬 경우 40배 희석까지는 안정한 것을 확인하였다. 증류수로 제조한 리포좀을 증류수, phosphate buffer, 그리고 phosphate buffered saline으로 희석하였고, phosphate buffer로 제조한 리포좀은 phosphate buffer, 그리고 phosphate buffered saline으로 희석하여 염 농도 증가에 따른 리포좀의 입자크기 및 제타전위 변화를 확인하였다. 그 결과 리포좀 분산액 내에 존재하는 염의 양이 증가할수록 리포좀의 입자크기가 약간씩 작아지는 경향을 나타내었고, 제타전위 또한 염의 양이 증가할수록 0에 가까워지는 경향을 나타내었다. 결론적으로, 리포좀의 입자크기와 제타전위는 리포좀의 안정성을 판단할 수 있는 좋은 요소이며 또한 리포좀 제조시의 용매와 다른 조건의 염농도는 리포좀 입자의 안정성에 큰 영향을 줄 수 있다고 사료된다.

In this study, DOPC liposomes were prepared with distilled water, phosphate buffer and phosphate buffered saline to evaluate the effects of salt on the stability of DOPC liposome. The changes in physical properties (likeparticle size and zeta potential) of liposome were measured after adding the salt. Liposomes were diluted 40 times and 80 times with hydration solvent to confirm the effect of dilution. Consequently, the stability of liposome was maintained up to 40 times dilution with hydration solvent. The liposome that prepared with distilled water was diluted with distilled water, phosphate buffer and phosphate buffered saline, and the liposome that prepared with phosphate buffer was diluted with phosphate buffer and phosphate buffered saline to evaluate the salt-induced changes in particle size and zeta potentia. As results, the particle size increased slightly and zeta potential became closer to 0 when the salt concentration was increased. In conclusion, particle size and zeta potential of liposome could be reasonable factors to evaluate the stability of liposome. In addition, we suggest that salt concentration of hydration solvent has a significant effect on the stability of liposome.

키워드

참고문헌

  1. M. J. Cork, The importance of skin barrier function. J. Dermatol. Treat., 8, S7 (1997).
  2. M. Matsumoto, H. Sugiura and M. Uehara, Skin barrier function in patients with completely healed atopic dermatitis. J. Dermatol. Science, 23(3), 178, (2000). https://doi.org/10.1016/S0923-1811(00)00073-6
  3. H. Clive, The stratum corneum: structure and function in health and disease, Dermatologic Therapy, 17, 6 (2004). https://doi.org/10.1111/j.1396-0296.2004.04S1001.x
  4. Skin delivery systems: transdermals, dermatologicals, and cosmetic actives, Wiley-blackwell, United states, New Jersey (2006).
  5. N. Aarti, N. K. Yogeshvar, and H. G. Richard, Transdermal drug delivery: overcoming the skin's barrier function, Pharmaceutical Science & Technology Today, 3(9), 318 (2000). https://doi.org/10.1016/S1461-5347(00)00295-9
  6. C. S. Amnon and B. Shafir, Transdermal drug delivery using microemulsion and aqueous systems: Influence of skin storage conditions on the in vitro permeability of diclofenac from aqueous vehicle systems, International Journal of Pharmaceutics, 311(1), 55 (2006). https://doi.org/10.1016/j.ijpharm.2005.12.019
  7. M. A. E. Mustafa, Y. A. Ossama, F. N. Viviane, and M. K. Nawal, Deformable liposomes and ethosomes: Mechanism of enhanced skin delivery, International Journal of Pharmaceutics, 322(1), 60 (2006). https://doi.org/10.1016/j.ijpharm.2006.05.027
  8. M. A. E. Mustafa, Y. A. Ossama, F. N. Viviane, and M. K. Nawal, Lipid vesicles for skin delivery of drugs: Reviewing three decades of research, International Journal of Pharmaceutics, 332(1), 1 (2007). https://doi.org/10.1016/j.ijpharm.2006.12.005
  9. B. Godin and E. Touitou, Transdermal skin delivery: Predictions for humans from in vivo, ex vivo and animal models, Advanced drug delivery reviews, 59(11), 1152 (2007). https://doi.org/10.1016/j.addr.2007.07.004
  10. D. Meisner and M. Mezei, Liposome ocular delivery systems, Advanced Drug Delivery Reviews, 16(1), 75 (1995). https://doi.org/10.1016/0169-409X(95)00016-Z
  11. A. A. Gabizon, Liposome circulation time and tumor targeting: implications for cancer chemotherapy, Advanced drug delivery reviews, 16(2), 285 (1995). https://doi.org/10.1016/0169-409X(95)00030-B
  12. H. Y. Yu and H. M. Liao, Triamcinolone permeation from different liposome formulations through rat skin in vitro, International Journal of Pharmaceutics, 127(1), 1 (1996). https://doi.org/10.1016/0378-5173(95)04055-2
  13. Y. Maitani, Y. Aso, A. Yamada, and S. Yoshioka, Effect of sugars on storage stability of lyophilized liposome/DNA complexes with high transfection efficiency, International Journal of Pharmaceutics, 356(1), 69 (2008). https://doi.org/10.1016/j.ijpharm.2007.12.033
  14. F. Nacka, M. Cansell, and B. Entressangles, In vitro behavior of marine lipid-based liposomes. Influence of pH, temperature, bile salts, and phospholipase A2, Lipids, 36(1), 35 (2001). https://doi.org/10.1007/s11745-001-0665-0
  15. W. W. Sulkowski, D. Pentak, K. Nowak, and A. Sulkowska, The influence of temperature, cholesterol content and pH on liposome stability, Journal of Molecular Structure, 744(3), 737 (2005).