• Title/Summary/Keyword: DNA Processing

Search Result 307, Processing Time 0.025 seconds

Sex Identification of Bovine Meat Using Male Specific SRY and ZFY Genes (웅성 특이적 SRY 및 ZFY 유전자를 이용한 쇠고기 성(性) 판별)

  • Shin, Sung-Chul;Chung, Ku-Young;Chung, Eui-Ryong
    • Food Science of Animal Resources
    • /
    • v.27 no.3
    • /
    • pp.351-356
    • /
    • 2007
  • The objective of this study was to develop a rapid and reliable method for the sex determination of beef using the PCR(polymerase chain reaction) technique. We have used two bovine sex determining genes, SRY and ZFY, on the Y-chromosome to identify the sex of Hanwoo and Holstein beet. We attempted to amplify 1,348 bp and 979 bp fragments from male and female genomic DNA corresponding to the SRY and ZFY genes, respectively, using male specific primers. The amplified PCR products were separated by electrophoresis in a 1.5% agarose gel to detect a male specific DNA band. When DNA from male beef was amplified with primers specific for the SRY gene, a DNA band of 1,348 bp was present in all of the male samples, but absent from all of the female samples. Also, when DNA from male beef was amplified with primers specific for the ZFY gene, a DNA band of 979 bp was observed in all of the male samples, but absent from all female samples. In conclusion, the bovine SRY and ZFY genes are typically found only in male beef. For the practical application of this method for the sexing of commercial beef at the processing and marketing stages after slaughter. a total of 350 beef samples collected randomly from local markets were analyzed for sex determination. The proportions of male and female samples were 252 (72%) and 98 (28%), respectively. Therefore. the SRY and ZFY genes. which are specific for the Y-chromosome, may be useful sex-diagnostic DNA markers to distinguish male meat from female meat.

A Graph Model and Analysis Algorithm for cDNA Microarray Image (cDNA 마이크로어레이 이미지를 위한 그래프 모델과 분석 알고리즘)

  • Jung, Ho-Youl;Hwang, Mi-Nyeong;Yu, Young-Jung;Cho, Hwan-Gue
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.7
    • /
    • pp.411-421
    • /
    • 2002
  • In this Paper we propose a new Image analysis algorithm for microarray processing and a method to locate the position of the grid cell using the topology of the grid spots. Microarray is a device which enables a parallel experiment of 10 to 100 thousands of test genes in order to measure the gene expression. Because of the huge data obtained by a experiment automated image analysis is needed. The final output of this microarray experiment is a set of 16-bit gray level image files which consist of grid-structured spots. In this paper we propose one algorithm which located the address of spots (spot indices) using graph structure from image data and a method which determines the precise location and shape of each spot by measuring the inclination of grid structure. Several experiments are given from real data sets.

Thermodynamics-Based Weight Encoding Methods for Improving Reliability of Biomolecular Perceptrons (생체분자 퍼셉트론의 신뢰성 향상을 위한 열역학 기반 가중치 코딩 방법)

  • Lim, Hee-Woong;Yoo, Suk-I.;Zhang, Byoung-Tak
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.12
    • /
    • pp.1056-1064
    • /
    • 2007
  • Biomolecular computing is a new computing paradigm that uses biomolecules such as DNA for information representation and processing. The huge number of molecules in a small volume and the innate massive parallelism inspired a novel computation method, and various computation models and molecular algorithms were developed for problem solving. In the meantime, the use of biomolecules for information processing supports the possibility of DNA computing as an application for biological problems. It has the potential as an analysis tool for biochemical information such as gene expression patterns. In this context, a DNA computing-based model of a biomolecular perceptron has been proposed and the result of its experimental implementation was presented previously. The weight encoding and weighted sum operation, which are the main components of a biomolecular perceptron, are based on the competitive hybridization reactions between the input molecules and weight-encoding probe molecules. However, thermodynamic symmetry in the competitive hybridizations is assumed, so there can be some error in the weight representation depending on the probe species in use. Here we suggest a generalized model of hybridization reactions considering the asymmetric thermodynamics in competitive hybridizations and present a weight encoding method for the reliable implementation of a biomolecular perceptron based on this model. We compare the accuracy of our weight encoding method with that of the previous one via computer simulations and present the condition of probe composition to satisfy the error limit.

Identification of Irradiated Foods by Using DNA, Immunochemical, and Biological Methods

  • Kim, Kyeung-Eun;Yang, Jae-Seung
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.4
    • /
    • pp.276-282
    • /
    • 1999
  • Ionizing radiation is considered to be an efficient technology to improve food safety and to extend food shelf-life in the food industry, and it has been used in food processing with a number of attributes. Food labeling should be established to enable the consumer to choose food freely, based on label information. A variety of methodologies to determine the physical, chemical, microbiological, and biological changes due to irradiation has been investigated in order to discriminate the irradiated and unirradiated food products for the consumer's free choice in food selection. However, no satisfactory method has been developed so far. In this review, various approaches based on DNA, immunochemical, and biological methods are addressed.

  • PDF

Primers for Typing Salmonella spp. using Random Amplified Polymorphic DNA (RAPD) Analysis (Salmonella spp.의 RAPD Typing을 위한 Primer의 분리력 비교)

  • Lim, Hyung-Kum;Lee, Kyung-Hee;Hong, Chong-Hae;Park, Gyung-Jin;Choi, Weon-Sang
    • Journal of Food Hygiene and Safety
    • /
    • v.18 no.4
    • /
    • pp.224-228
    • /
    • 2003
  • Random amplified polymorphic DNA (RAPD) analysis is based on the amplification of random DNA segment using a single arbitratrary primer. For typing Salmonella spp., polymorphic DNA patterns identified by this method can be used. To select the primers for RAPD typing Salmonella spp., the performances of 20 primers were compared by analyzing 16 Salmonella spp. reference strains. Reproducible electrophoresis patterns were obtained. Among the 20 primers tested, 4 primers (A, OPG04, OPG10, OPL03) showed better differentiation than the others. At the time discrimination index, band clarity, band number and difficulty of band scoring were considered. These primers will be useful for typing Salmonella spp. in the future. Curretly, we are under investigation for the RAPD typing of contaminated Slmonella spp. for the risk analysis of pork processing plant using the primers.

Recent advances in developing molecular tools for targeted genome engineering of mammalian cells

  • Lim, Kwang-Il
    • BMB Reports
    • /
    • v.48 no.1
    • /
    • pp.6-12
    • /
    • 2015
  • Various biological molecules naturally existing in diversified species including fungi, bacteria, and bacteriophage have functionalities for DNA binding and processing. The biological molecules have been recently actively engineered for use in customized genome editing of mammalian cells as the molecule-encoding DNA sequence information and the underlying mechanisms how the molecules work are unveiled. Excitingly, multiple novel methods based on the newly constructed artificial molecular tools have enabled modifications of specific endogenous genetic elements in the genome context at efficiencies that are much higher than that of the conventional homologous recombination based methods. This minireview introduces the most recently spotlighted molecular genome engineering tools with their key features and ongoing modifications for better performance. Such ongoing efforts have mainly focused on the removal of the inherent DNA sequence recognition rigidity from the original molecular platforms, the addition of newly tailored targeting functions into the engineered molecules, and the enhancement of their targeting specificity. Effective targeted genome engineering of mammalian cells will enable not only sophisticated genetic studies in the context of the genome, but also widely-applicable universal therapeutics based on the pinpointing and correction of the disease-causing genetic elements within the genome in the near future.

An efficient gene targeting system using homologous recombination in plants (식물에서의 상동재조합을 이용한 효율적인 진타겟팅 시스템)

  • Kwon, Yong-Ik;Lee, Hyo-Yeon
    • Journal of Plant Biotechnology
    • /
    • v.42 no.3
    • /
    • pp.154-160
    • /
    • 2015
  • The plant breeding technology was developed with genetic engineering. Many researchers and breeders have turned from traditional breeding to molecular breeding. Genetically modified organisms (GMO) were developed via molecular breeding technology. Currently, molecular breeding technologies facilitate efficient plant breeding without introducing foreign genes, in virtue by of gene editing technology. Gene targeting (GT) via homologous recombination (HR) is one of the best gene editing methods available to modify specific DNA sequences in genomes. GT utilizes DNA repair pathways. Thus, DNA repair systems are controlled to enhance HR processing. Engineered sequence specific endonucleases were applied to improve GT efficiency. Engineered sequence specific endonucleases like the zinc finger nuclease (ZFN), TAL effector nuclease (TALEN), and CRISPR-Cas9 create DNA double-strand breaks (DSB) that can stimulate HR at a target site. RecQl4, Exo1 and Rad51 are effectors that enhance DSB repair via the HR pathway. This review focuses on recent developments in engineered sequence specific endonucleases and ways to improve the efficiency of GT via HR effectors in plants.

Cloning and Sequence Analysis of Ribosomal Protein S4 cDNA from Root of Panax ginseng

  • In Jun-Gyo;Lee Bum-Soo;Song Won-Seob;Bae Chang-Hyu;Choi Seong-Kyu;Yang Deok-Chun
    • Plant Resources
    • /
    • v.8 no.2
    • /
    • pp.110-115
    • /
    • 2005
  • Ribosomal protein complex with ribosomal RNA to form the subunits of the ribosome serve essential functions in protein synthesis. A full-length cDNA (PRPS4) encoding ribosomal protein S4 has been isolated and its nucleotide sequence determined in ginseng plant (Panax ginseng). A PRPS4 cDNA is 1105 nucleotides long and has an open reading frame of 792 bp with a deduced amino acid sequence of 264 residues (pI 10.67). The deduced amino acid sequence of PRPS4 matched to the previously reported ribosomal protein S4 genes. Their degree of amino acid identity ranged from 68 to $92\%$. Phylogenetic analysis based on the amino acid residues showed that the PRPS4 grouped with ribosomal protein S4 of S. tuberosum (CAA54095).

  • PDF

Pattern Classification Algorithm of DNA Chip Image using ANN (신경망을 이용한 DNA칩 영상 패턴 분류 알고리즘)

  • Joo, Jong-Tae;Kim, Dae-Wook;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.5
    • /
    • pp.556-561
    • /
    • 2006
  • It is very important to classify the DNA Chip image pattern in order to acquire useful information about genetic disease of people. In this paper, we developed the novel pattern classification method of DNA Chip image using MLP based back-propagation and Self organizing Map learning algorithm. And then we compared and analyzed these classified pattern results. Also we carried out experiment in the MV2440 board using CPU Cote for S3C2440(ARM 920T) and PC environment, and displayed its results in order to give the genetic information to user mote easily in various environment.

A Novel Node Management in Hadoop Cluster by using DNA

  • Balaraju. J;PVRD. Prasada Rao
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.134-140
    • /
    • 2023
  • The distributed system is playing a vital role in storing and processing big data and data generation is speedily increasing from various sources every second. Hadoop has a scalable, and efficient distributed system supporting commodity hardware by combining different networks in the topographical locality. Node support in the Hadoop cluster is rapidly increasing in different versions which are facing difficulty to manage clusters. Hadoop does not provide Node management, adding and deletion node futures. Node identification in a cluster completely depends on DHCP servers which managing IP addresses, hostname based on the physical address (MAC) address of each Node. There is a scope to the hacker to theft the data using IP or Hostname and creating a disturbance in a distributed system by adding a malicious node, assigning duplicate IP. This paper proposing novel node management for the distributed system using DNA hiding and generating a unique key using a unique physical address (MAC) of each node and hostname. The proposed mechanism is providing better node management for the Hadoop cluster providing adding and deletion node mechanism by using limited computations and providing better node security from hackers. The main target of this paper is to propose an algorithm to implement Node information hiding in DNA sequences to increase and provide security to the node from hackers.