1 |
Wu X, Li Y, Crise B and Burgess SM (2003) Transcription start regions in the human genome are favored targets for MLV integration. Science 300, 1749-1751.
DOI
ScienceOn
|
2 |
Sarkar I, Hauber I, Hauber J and Buchholz F (2007) HIV-1 proviral DNA excision using an evolved recombinase. Science 316, 1912-1915
DOI
ScienceOn
|
3 |
Hacein-Bey-Abina S, Von Kalle C, Schmidt M et al (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302, 415-419
DOI
ScienceOn
|
4 |
Lim KI (2012) Retroviral integration profiles: their determinants and implications for gene therapy. BMB Rep 45, 207-212
DOI
ScienceOn
|
5 |
Schroder AR, Shinn P, Chen H, Berry C, Ecker JR and Bushman F (2002) HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110, 521-529
DOI
ScienceOn
|
6 |
Lim KI, Klimczak R, Yu JH and Schaffer DV (2010) Specific insertions of zinc finger domains into Gag-Pol yield engineered retroviral vectors with selective integration properties. Proc Natl Acad Sci U S A 107, 12475-12480
DOI
ScienceOn
|
7 |
Moure CM, Gimble FS and Quiocho FA (2003) The crystal structure of the gene targeting homing endonuclease I-SceI reveals the origins of its target site specificity. J Molec Biol 334, 685-695
DOI
ScienceOn
|
8 |
Bae S, Park J and Kim JS (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30, 1473-1475
DOI
ScienceOn
|
9 |
Grizot S, Epinat JC, Thomas S et al (2010) Generation of redesigned homing endonucleases comprising DNA-binding domains derived from two different scaffolds. Nucleic Acids Res 38, 2006-2018
DOI
ScienceOn
|
10 |
Bolduc JM, Spiegel PC, Chatterjee P et al (2003) Structural and biochemical analyses of DNA and RNA binding by a bifunctional homing endonuclease and group I intron splicing factor. Genes Dev 17, 2875-2888
DOI
ScienceOn
|
11 |
Wang Y, Khan IF, Boissel S et al (2014) Progressive engineering of a homing endonuclease genome editing reagent for the murine X-linked immunodeficiency locus. Nucleic Acids Res 42, 6463-6475
DOI
ScienceOn
|
12 |
Stoddard BL (2005) Homing endonuclease structure and function. Q Rev Biophys 38, 49-95
DOI
ScienceOn
|
13 |
Petek LM, Russell DW and Miller DG (2010) Frequent endonuclease cleavage at off-target locations in vivo. Mol Ther 18, 983-986
DOI
ScienceOn
|
14 |
Zhang F, Cong L, Lodato S, Kosuri S, Church GM and Arlotta P (2011) Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol 29, 149-153
DOI
ScienceOn
|
15 |
Boissel S, Jarjour J, Astrakhan A et al (2014) megaTALs: a rare-cleaving nuclease architecture for therapeutic genome engineering. Nucleic Acids Res 42, 2591-2601
DOI
ScienceOn
|
16 |
Gaj T, Mercer AC, Sirk SJ, Smith HL and Barbas CF 3rd (2013) A comprehensive approach to zinc-finger recombinase customization enables genomic targeting in human cells. Nucleic Acids Res 41, 3937-3946
DOI
ScienceOn
|
17 |
Gersbach CA, Gaj T, Gordley RM and Barbas CF 3rd (2010) Directed evolution of recombinase specificity by split gene reassembly. Nucleic Acids Res 38, 4198-4206
DOI
|
18 |
Mali P, Esvelt KM and Church GM (2013) Cas9 as a versatile tool for engineering biology. Nat Methods 10, 957-963
DOI
ScienceOn
|
19 |
Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339, 823-826
DOI
|
20 |
Cho SW, Kim S, Kim Y et al (2014) Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res 24, 132-141
DOI
ScienceOn
|
21 |
Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA and Liu DR (2013) High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31, 839-843
DOI
ScienceOn
|
22 |
Hsu PD, Scott DA, Weinstein JA et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31, 827-832
DOI
ScienceOn
|
23 |
Cho SW, Kim S, Kim JM and Kim JS (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31, 230-232
DOI
ScienceOn
|
24 |
Szczepek M, Brondani V, Buchel J, Serrano L, Segal DJ and Cathomen T (2007) Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 25, 786-793
DOI
ScienceOn
|
25 |
Fu Y, Foden JA, Khayter C et al (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31, 822-826
DOI
ScienceOn
|
26 |
Cradick TJ, Fine EJ, Antico CJ and Bao G (2013) CRISPR/Cas9 systems targeting beta-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res 41, 9584-9592
DOI
ScienceOn
|
27 |
Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823
DOI
|
28 |
Kim E, Kim S, Kim DH, Choi BS, Choi IY and Kim JS (2012) Precision genome engineering with programmable DNA-nicking enzymes. Genome Res 22, 1327-1333
DOI
ScienceOn
|
29 |
Bogdanove AJ (2014) Principles and applications of TAL effectors for plant physiology and metabolism. Curr Opin Plant Biol 19C, 99-104
DOI
ScienceOn
|
30 |
Boch J, Scholze H, Schornack S et al (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326, 1509-1512
DOI
ScienceOn
|
31 |
Moscou MJ and Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326, 1501
DOI
ScienceOn
|
32 |
Cermak T, Doyle EL, Christian M et al (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39, e82
DOI
|
33 |
Mussolino C, Morbitzer R, Lutge F, Dannemann N, Lahaye T and Cathomen T (2011) A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res 39, 9283-9293
DOI
ScienceOn
|
34 |
Perez EE, Wang J, Miller JC et al (2008) Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol 26, 808-816
DOI
ScienceOn
|
35 |
Valton J, Dupuy A, Daboussi F et al (2012) Overcoming transcription activator-like effector (TALE) DNA binding domain sensitivity to cytosine methylation. J Biol Chem 287, 38427-38432
DOI
|
36 |
Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13, 484-492
DOI
ScienceOn
|
37 |
Weber E, Gruetzner R, Werner S, Engler C and Marillonnet S (2011) Assembly of designer TAL effectors by Golden Gate cloning. PLoS One 6, e19722
DOI
|
38 |
Cui X, Ji D, Fisher DA, Wu Y, Briner DM and Weinstein EJ (2011) Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotechnol 29, 64-67
DOI
ScienceOn
|
39 |
Pattanayak V, Ramirez CL, Joung JK and Liu DR (2011) Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods 8, 765-770
DOI
ScienceOn
|
40 |
Dreier B, Segal DJ and Barbas CF 3rd (2000) Insights into the molecular recognition of the 5'-GNN-3' family of DNA sequences by zinc finger domains. J Molec Biol 303, 489-502
DOI
ScienceOn
|
41 |
Dreier B, Beerli RR, Segal DJ, Flippin JD and Barbas CF 3rd (2001) Development of zinc finger domains for recognition of the 5'-ANN-3' family of DNA sequences and their use in the construction of artificial transcription factors. J Biol Chem 276, 29466-29478
DOI
ScienceOn
|
42 |
Dreier B, Fuller RP, Segal DJ et al (2005) Development of zinc finger domains for recognition of the 5'-CNN-3' family DNA sequences and their use in the construction of artificial transcription factors. J Biol Chem 280, 35588-35597
DOI
ScienceOn
|
43 |
Gibson DG, Glass JI, Lartigue C et al (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329, 52-56
DOI
|
44 |
Pruett-Miller SM, Reading DW, Porter SN and Porteus MH (2009) Attenuation of zinc finger nuclease toxicity by small-molecule regulation of protein levels. PLoS Genet 5, e1000376
DOI
ScienceOn
|
45 |
Fu F and Voytas DF (2013) Zinc Finger Database (ZiFDB) v2.0: a comprehensive database of C(2)H(2) zinc fingers and engineered zinc finger arrays. Nucl Acids Res 41, D452-455
DOI
|
46 |
Sander JD, Dahlborg EJ, Goodwin MJ et al (2011) Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods 8, 67-69
DOI
ScienceOn
|
47 |
Kim Y, Kweon J, Kim A et al (2013) A library of TAL effector nucleases spanning the human genome. Nat Biotechnol 31, 251-258
DOI
ScienceOn
|
48 |
Pruett-Miller SM, Connelly JP, Maeder ML, Joung JK and Porteus MH (2008) Comparison of zinc finger nucleases for use in gene targeting in mammalian cells. Mol Ther 16, 707-717
DOI
ScienceOn
|
49 |
Ramalingam S, Annaluru N and Chandrasegaran S (2013) A CRISPR way to engineer the human genome. Genome Biol 14, 107
DOI
|
50 |
Liang F, Romanienko PJ, Weaver DT, Jeggo PA and Jasin M (1996) Chromosomal double-strand break repair in Ku80-deficient cells. Proc Natl Acad Sci U S A 93, 8929-8933
DOI
ScienceOn
|
51 |
Mao Z, Bozzella M, Seluanov A and Gorbunova V (2008) Comparison of nonhomologous end joining and homologous recombination in human cells. DNA Repair 7, 1765-1771
DOI
ScienceOn
|
52 |
Cornu TI, Thibodeau-Beganny S, Guhl E et al (2008) DNA-binding specificity is a major determinant of the activity and toxicity of zinc-finger nucleases. Mol Ther 16, 352-358
DOI
ScienceOn
|
53 |
Lam KN, van Bakel H, Cote AG, van der Ven A, and Hughes TR (2011) Sequence specificity is obtained from the majority of modular C2H2 zinc-finger arrays. Nucl Acids Res 39, 4680-4690
DOI
ScienceOn
|
54 |
Toscano MG, Anderson P, Munoz P et al (2013) Use of zinc-finger nucleases to knock out the WAS gene in K562 cells: a human cellular model for Wiskott-Aldrich syndrome. Dis Models Mechanisms 6, 544-554
DOI
ScienceOn
|
55 |
Hockemeyer D, Soldner F, Beard C et al (2009) Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol 27, 851-857
DOI
ScienceOn
|