Browse > Article
http://dx.doi.org/10.5010/JPB.2015.42.3.154

An efficient gene targeting system using homologous recombination in plants  

Kwon, Yong-Ik (Subtropical Horticulture Research Institute, Jeju National University)
Lee, Hyo-Yeon (Subtropical Horticulture Research Institute, Jeju National University)
Publication Information
Journal of Plant Biotechnology / v.42, no.3, 2015 , pp. 154-160 More about this Journal
Abstract
The plant breeding technology was developed with genetic engineering. Many researchers and breeders have turned from traditional breeding to molecular breeding. Genetically modified organisms (GMO) were developed via molecular breeding technology. Currently, molecular breeding technologies facilitate efficient plant breeding without introducing foreign genes, in virtue by of gene editing technology. Gene targeting (GT) via homologous recombination (HR) is one of the best gene editing methods available to modify specific DNA sequences in genomes. GT utilizes DNA repair pathways. Thus, DNA repair systems are controlled to enhance HR processing. Engineered sequence specific endonucleases were applied to improve GT efficiency. Engineered sequence specific endonucleases like the zinc finger nuclease (ZFN), TAL effector nuclease (TALEN), and CRISPR-Cas9 create DNA double-strand breaks (DSB) that can stimulate HR at a target site. RecQl4, Exo1 and Rad51 are effectors that enhance DSB repair via the HR pathway. This review focuses on recent developments in engineered sequence specific endonucleases and ways to improve the efficiency of GT via HR effectors in plants.
Keywords
Gene editing; Gene targeting; Homologous recombination; Engineered endonucleases;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Schiml S, Fauser F, Puchta H (2014) The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J 80:1139-1150   DOI
2 Schuermann D, Molinier J, Fritsch O, Hohn B (2005) The dual nature of homologous recombination in plants. Trends Genet 21:172-181   DOI
3 Schwab R, Ossowski S, Riester M, et al (2006) Highly Specific Gene Silencing by Artificial MicroRNAs in Arabidopsis. Plant Cell Online 18:1121-1133   DOI
4 Shan Q, Wang Y, Chen K, et al (2013a) Rapid and Efficient Gene Modification in Rice and Brachypodium Using TALENs. Mol Plant sss162
5 Shan Q, Wang Y, Li J, et al (2013b) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686-688   DOI
6 Shukla VK, Doyon Y, Miller JC, et al (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437-441. 2   DOI
7 Singh SK, Roy S, Choudhury SR, Sengupta DN (2010) DNA repair and recombination in higher plants: insights from comparative genomics of arabidopsis and rice. BMC Genomics 11:443   DOI
8 Symington LS, Gautier J (2011) Double-Strand Break End Resection and Repair Pathway Choice. Annu Rev Genet 45:247-271   DOI
9 Tanaka S, Ishii C, Hatakeyama S, Inoue H (2010) High efficient gene targeting on the AGAMOUS gene in an Arabidopsis AtLIG4 mutant. Biochem Biophys Res Commun 396:289-293   DOI
10 Terada R, Johzuka-Hisatomi Y, Saitoh M, et al (2007) Gene Targeting by Homologous Recombination as a Biotechnological Tool for Rice Functional Genomics. Plant Physiol 144:846-856   DOI
11 Terada R, Nagahara M, Furukawa K, et al (2010) Cre-loxP mediated marker elimination and gene reactivation at the waxy locus created in rice genome based on strong positive –negative selection. Plant Biotechnol 27:29-37   DOI
12 Terada R, Urawa H, Inagaki Y, et al (2002) Efficient gene targeting by homologous recombination in rice. Nat Biotechnol 20:1030-1034   DOI
13 Terns MP, Terns RM (2011) CRISPR-based adaptive immune systems. Curr Opin Microbiol 14:321-327   DOI
14 Townsend JA, Wright DA, Winfrey RJ, et al (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459:442-445   DOI
15 Voytas DF (2013) Plant Genome Engineering with Sequence- Specific Nucleases. Annu Rev Plant Biol 64:327-350   DOI
16 Wang Y, Yau Y-Y, Perkins-Balding D, Thomson JG (2010) Recombinase technology: applications and possibilities. Plant Cell Rep 30:267-285
17 Yamauchi T, Johzuka-Hisatomi Y, Fukada-Tanaka S, et al (2009) Homologous recombination-mediated knock-in targeting of the MET1a gene for a maintenance DNA methyltransferase reproducibly reveals dosage-dependent spatiotemporal gene expression in rice. Plant J 60:386-396   DOI
18 Zhang F, Maeder ML, Unger-Wallace E, et al (2010) High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci 107:12028-12033   DOI
19 Zhang Y, Zhang F, Li X, et al (2013) Transcription Activator-Like Effector Nucleases Enable Efficient Plant Genome Engineering. Plant Physiol 161:20-27   DOI
20 Abe K, Osakabe K, Nakayama S, et al (2005) Arabidopsis RAD51C Gene Is Important for Homologous Recombination in Meiosis and Mitosis. Plant Physiol 139:896-908   DOI
21 Alonso JM, Stepanova AN, Leisse TJ, et al (2003) Genome-Wide Insertional Mutagenesis of Arabidopsis thaliana. Science 301:653-657   DOI
22 An S, Park S, Jeong D-H, et al (2003) Generation and Analysis of End Sequence Database for T-DNA Tagging Lines in Rice. Plant Physiol 133:2040-2047   DOI
23 Araki M, Ishii T (2015) Towards social acceptance of plant breeding by genome editing. Trends Plant Sci 20:145-149   DOI
24 Belhaj K, Chaparro-Garcia A, Kamoun S, et al (2015) Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol 32:76-84   DOI
25 Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41-52   DOI
26 Cary LC, Goebel M, Corsaro BG, et al (1989) Transposon mutagenesis of baculoviruses: Analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology 172:156-169   DOI
27 Endo M, Toki S (2014) Toward establishing an efficient and versatile gene targeting system in higher plants. Biocatal Agric Biotechnol 3:2-6
28 Endo M, Ishikawa Y, Osakabe K, et al (2006a) Increased frequency of homologous recombination and T-DNA integration in Arabidopsis CAF-1 mutants. EMBO J 25:5579-5590   DOI
29 Endo M, Osakabe K, Ichikawa H, Toki S (2006b) Molecular Characterization of True and Ectopic Gene Targeting Events at the Acetolactate Synthase Gene in Arabidopsis. Plant Cell Physiol 47:372-379   DOI
30 Endo M, Osakabe K, Ono K, et al (2007) Molecular breeding of a novel herbicide-tolerant rice by gene targeting. Plant J 52:157-166   DOI
31 Fu Y, Foden JA, Khayter C, et al (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31:822-826   DOI
32 Gaj T, Gersbach CA, Barbas III CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397-405   DOI
33 Gao J, Wang G, Ma S, et al (2014) CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol Biol 87:99-110
34 Hartung F, Schiemann J (2014) Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU. Plant J 78:742-752   DOI
35 Heyer W-D, Ehmsen KT, Liu J (2010) Regulation of homologous recombination in eukaryotes. Annu Rev Genet 44:113-139   DOI
36 Hohn B, Puchta H (2003) Some like it sticky: targeting of the rice gene Waxy. Trends Plant Sci 8:51-53
37 Johnson RA, Gurevich V, Filler S, et al (2014) Comparative assessments of CRISPR-Cas nucleases' cleavage efficiency in planta. Plant Mol Biol 87:143-156
38 Iida S, Terada R (2005) Modification of Endogenous Natural Genes by Gene Targeting in Rice and Other Higher Plants. Plant Mol Biol 59:205-219   DOI
39 Iida S, Terada R (2004) A tale of two integrations, transgene and T-DNA: gene targeting by homologous recombination in rice. Curr Opin Biotechnol 15:132-138   DOI
40 James C (2013) Global Status of Commercialized Biotech/GM Crops. ISAAA: Ithaca, NY., ISAAA Brief
41 Kaufmann KB, Buning H, Galy A, et al (2013) Gene therapy on the move. EMBO Mol Med 5:1642-1661   DOI
42 Kaul MLH, Bhan DAK (1977) Mutagenic effectiveness and efficiency of EMS, DES and gamma-rays in rice. Theor Appl Genet 50:241-246   DOI
43 Kikuchi K, Abdel-Aziz HI, Taniguchi Y, et al (2009) Bloom DNA Helicase Facilitates Homologous Recombination between Diverged Homologous Sequences. J Biol Chem 284:26360-26367   DOI
44 Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci 93:1156-1160   DOI
45 Kwon Y-I, Abe K, Endo M, et al (2013) DNA replication arrest leads to enhanced homologous recombination and cell death in meristems of rice OsRecQl4 mutants. BMC Plant Biol 13:62   DOI
46 Kwon YI, Abe K, Osakabe K, et al (2012) Overexpression of OsRecQl4 and/or OsExo1 Enhances DSB-Induced Homologous Recombination in Rice. Plant Cell Physiol 53:2142-2152   DOI
47 Li T, Liu B, Spalding MH, et al (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390-392   DOI
48 Lee KY, Lund P, Lowe K, Dunsmuir P (1990) Homologous recombination in plant cells after Agrobacterium-mediated transformation. Plant Cell Online 2:415-425   DOI
49 Liang Z, Zhang K, Chen K, Gao C (2014) Targeted Mutagenesis in Zea mays Using TALENs and the CRISPR/Cas System. J Genet Genomics 41:63-68   DOI
50 Li J-F, Norville JE, Aach J, et al (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688-691   DOI
51 Liu Q, Segal DJ, Ghiara JB, Barbas CF (1997) Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proc Natl Acad Sci 94:5525-5530   DOI
52 Lusser M, Parisi C, Plan D, Rodriguez-Cerezo E (2012) Deployment of new biotechnologies in plant breeding. Nat Biotechnol 30:231-239   DOI
53 Mansour SL, Thomas KR, Capecchi MR (1988) Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336:348-352   DOI
54 Moritoh S, Eun C-H, Ono A, et al (2012) Targeted disruption of an orthologue of DOMAINS REARRANGED METHYLASE 2, OsDRM2, impairs the growth of rice plants by abnormal DNA methylation. Plant J 71:85-98   DOI
55 Nekrasov V, Staskawicz B, Weigel D, et al (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31:691-693   DOI
56 Ono A, Yamaguchi K, Fukada-Tanaka S, et al (2012) A null mutation of ROS1a for DNA demethylation in rice is not transmittable to progeny. Plant J 71:564-574   DOI
57 Nimonkar AV, Ozsoy AZ, Genschel J, et al (2008) Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair. Proc Natl Acad Sci 105:16906-16911   DOI
58 Nishizawa-Yokoi A, Endo M, Osakabe K, et al (2014) Precise marker excision system using an animal-derived piggyBac transposon in plants. Plant J 77:454-463   DOI
59 Nishizawa-Yokoi A, Nonaka S, Saika H, et al (2012) Suppression of Ku70/80 or Lig4 leads to decreased stable transformation and enhanced homologous recombination in rice. New Phytol 196:1048-1059   DOI
60 Ozawa K, Wakasa Y, Ogo Y, et al (2012) Development of an Efficient Agrobacterium-Mediated Gene Targeting System for Rice and Analysis of Rice Knockouts Lacking Granule- Bound Starch Synthase (Waxy) and ${\beta}1$,2-Xylosyltransferase. Plant Cell Physiol 53:755-761   DOI
61 Paszkowski J, Baur M, Bogucki A, Potrykus I (1988) Gene targeting in plants. EMBO J 7:4021-4026
62 Puchta H, Fauser F (2013) Gene targeting in plants: 25 years later. Int J Dev Biol 57:629-637   DOI
63 Ran FA, Hsu PD, Lin C-Y, et al (2013) Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity. Cell 154:1380-1389   DOI
64 Remy S, Tesson L, Menoret S, et al (2010) Zinc-finger nucleases: a powerful tool for genetic engineering of animals. Transgenic Res 19:363-371   DOI