DOI QR코드

DOI QR Code

식물에서의 상동재조합을 이용한 효율적인 진타겟팅 시스템

An efficient gene targeting system using homologous recombination in plants

  • 권용익 (제주대학교 아열대원예산업연구소) ;
  • 이효연 (제주대학교 아열대원예산업연구소)
  • Kwon, Yong-Ik (Subtropical Horticulture Research Institute, Jeju National University) ;
  • Lee, Hyo-Yeon (Subtropical Horticulture Research Institute, Jeju National University)
  • 투고 : 2015.03.22
  • 심사 : 2015.05.12
  • 발행 : 2015.09.30

초록

The plant breeding technology was developed with genetic engineering. Many researchers and breeders have turned from traditional breeding to molecular breeding. Genetically modified organisms (GMO) were developed via molecular breeding technology. Currently, molecular breeding technologies facilitate efficient plant breeding without introducing foreign genes, in virtue by of gene editing technology. Gene targeting (GT) via homologous recombination (HR) is one of the best gene editing methods available to modify specific DNA sequences in genomes. GT utilizes DNA repair pathways. Thus, DNA repair systems are controlled to enhance HR processing. Engineered sequence specific endonucleases were applied to improve GT efficiency. Engineered sequence specific endonucleases like the zinc finger nuclease (ZFN), TAL effector nuclease (TALEN), and CRISPR-Cas9 create DNA double-strand breaks (DSB) that can stimulate HR at a target site. RecQl4, Exo1 and Rad51 are effectors that enhance DSB repair via the HR pathway. This review focuses on recent developments in engineered sequence specific endonucleases and ways to improve the efficiency of GT via HR effectors in plants.

키워드

참고문헌

  1. Abe K, Osakabe K, Nakayama S, et al (2005) Arabidopsis RAD51C Gene Is Important for Homologous Recombination in Meiosis and Mitosis. Plant Physiol 139:896-908 https://doi.org/10.1104/pp.105.065243
  2. Alonso JM, Stepanova AN, Leisse TJ, et al (2003) Genome-Wide Insertional Mutagenesis of Arabidopsis thaliana. Science 301:653-657 https://doi.org/10.1126/science.1086391
  3. An S, Park S, Jeong D-H, et al (2003) Generation and Analysis of End Sequence Database for T-DNA Tagging Lines in Rice. Plant Physiol 133:2040-2047 https://doi.org/10.1104/pp.103.030478
  4. Araki M, Ishii T (2015) Towards social acceptance of plant breeding by genome editing. Trends Plant Sci 20:145-149 https://doi.org/10.1016/j.tplants.2015.01.010
  5. Belhaj K, Chaparro-Garcia A, Kamoun S, et al (2015) Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol 32:76-84 https://doi.org/10.1016/j.copbio.2014.11.007
  6. Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41-52 https://doi.org/10.1016/j.biotechadv.2014.12.006
  7. Cary LC, Goebel M, Corsaro BG, et al (1989) Transposon mutagenesis of baculoviruses: Analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology 172:156-169 https://doi.org/10.1016/0042-6822(89)90117-7
  8. Endo M, Ishikawa Y, Osakabe K, et al (2006a) Increased frequency of homologous recombination and T-DNA integration in Arabidopsis CAF-1 mutants. EMBO J 25:5579-5590 https://doi.org/10.1038/sj.emboj.7601434
  9. Endo M, Osakabe K, Ichikawa H, Toki S (2006b) Molecular Characterization of True and Ectopic Gene Targeting Events at the Acetolactate Synthase Gene in Arabidopsis. Plant Cell Physiol 47:372-379 https://doi.org/10.1093/pcp/pcj003
  10. Endo M, Osakabe K, Ono K, et al (2007) Molecular breeding of a novel herbicide-tolerant rice by gene targeting. Plant J 52:157-166 https://doi.org/10.1111/j.1365-313X.2007.03230.x
  11. Endo M, Toki S (2014) Toward establishing an efficient and versatile gene targeting system in higher plants. Biocatal Agric Biotechnol 3:2-6
  12. Fu Y, Foden JA, Khayter C, et al (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31:822-826 https://doi.org/10.1038/nbt.2623
  13. Gaj T, Gersbach CA, Barbas III CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397-405 https://doi.org/10.1016/j.tibtech.2013.04.004
  14. Gao J, Wang G, Ma S, et al (2014) CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol Biol 87:99-110
  15. Hartung F, Schiemann J (2014) Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU. Plant J 78:742-752 https://doi.org/10.1111/tpj.12413
  16. Heyer W-D, Ehmsen KT, Liu J (2010) Regulation of homologous recombination in eukaryotes. Annu Rev Genet 44:113-139 https://doi.org/10.1146/annurev-genet-051710-150955
  17. Hohn B, Puchta H (2003) Some like it sticky: targeting of the rice gene Waxy. Trends Plant Sci 8:51-53
  18. Iida S, Terada R (2005) Modification of Endogenous Natural Genes by Gene Targeting in Rice and Other Higher Plants. Plant Mol Biol 59:205-219 https://doi.org/10.1007/s11103-005-2162-x
  19. Iida S, Terada R (2004) A tale of two integrations, transgene and T-DNA: gene targeting by homologous recombination in rice. Curr Opin Biotechnol 15:132-138 https://doi.org/10.1016/j.copbio.2004.02.005
  20. James C (2013) Global Status of Commercialized Biotech/GM Crops. ISAAA: Ithaca, NY., ISAAA Brief
  21. Johnson RA, Gurevich V, Filler S, et al (2014) Comparative assessments of CRISPR-Cas nucleases' cleavage efficiency in planta. Plant Mol Biol 87:143-156
  22. Kaufmann KB, Buning H, Galy A, et al (2013) Gene therapy on the move. EMBO Mol Med 5:1642-1661 https://doi.org/10.1002/emmm.201202287
  23. Kaul MLH, Bhan DAK (1977) Mutagenic effectiveness and efficiency of EMS, DES and gamma-rays in rice. Theor Appl Genet 50:241-246 https://doi.org/10.1007/BF00273758
  24. Kikuchi K, Abdel-Aziz HI, Taniguchi Y, et al (2009) Bloom DNA Helicase Facilitates Homologous Recombination between Diverged Homologous Sequences. J Biol Chem 284:26360-26367 https://doi.org/10.1074/jbc.M109.029348
  25. Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci 93:1156-1160 https://doi.org/10.1073/pnas.93.3.1156
  26. Kwon Y-I, Abe K, Endo M, et al (2013) DNA replication arrest leads to enhanced homologous recombination and cell death in meristems of rice OsRecQl4 mutants. BMC Plant Biol 13:62 https://doi.org/10.1186/1471-2229-13-62
  27. Kwon YI, Abe K, Osakabe K, et al (2012) Overexpression of OsRecQl4 and/or OsExo1 Enhances DSB-Induced Homologous Recombination in Rice. Plant Cell Physiol 53:2142-2152 https://doi.org/10.1093/pcp/pcs155
  28. Lee KY, Lund P, Lowe K, Dunsmuir P (1990) Homologous recombination in plant cells after Agrobacterium-mediated transformation. Plant Cell Online 2:415-425 https://doi.org/10.1105/tpc.2.5.415
  29. Liang Z, Zhang K, Chen K, Gao C (2014) Targeted Mutagenesis in Zea mays Using TALENs and the CRISPR/Cas System. J Genet Genomics 41:63-68 https://doi.org/10.1016/j.jgg.2013.12.001
  30. Li J-F, Norville JE, Aach J, et al (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688-691 https://doi.org/10.1038/nbt.2654
  31. Li T, Liu B, Spalding MH, et al (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390-392 https://doi.org/10.1038/nbt.2199
  32. Liu Q, Segal DJ, Ghiara JB, Barbas CF (1997) Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proc Natl Acad Sci 94:5525-5530 https://doi.org/10.1073/pnas.94.11.5525
  33. Lusser M, Parisi C, Plan D, Rodriguez-Cerezo E (2012) Deployment of new biotechnologies in plant breeding. Nat Biotechnol 30:231-239 https://doi.org/10.1038/nbt.2142
  34. Mansour SL, Thomas KR, Capecchi MR (1988) Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336:348-352 https://doi.org/10.1038/336348a0
  35. Moritoh S, Eun C-H, Ono A, et al (2012) Targeted disruption of an orthologue of DOMAINS REARRANGED METHYLASE 2, OsDRM2, impairs the growth of rice plants by abnormal DNA methylation. Plant J 71:85-98 https://doi.org/10.1111/j.1365-313X.2012.04974.x
  36. Nekrasov V, Staskawicz B, Weigel D, et al (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31:691-693 https://doi.org/10.1038/nbt.2655
  37. Nimonkar AV, Ozsoy AZ, Genschel J, et al (2008) Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair. Proc Natl Acad Sci 105:16906-16911 https://doi.org/10.1073/pnas.0809380105
  38. Nishizawa-Yokoi A, Endo M, Osakabe K, et al (2014) Precise marker excision system using an animal-derived piggyBac transposon in plants. Plant J 77:454-463 https://doi.org/10.1111/tpj.12367
  39. Nishizawa-Yokoi A, Nonaka S, Saika H, et al (2012) Suppression of Ku70/80 or Lig4 leads to decreased stable transformation and enhanced homologous recombination in rice. New Phytol 196:1048-1059 https://doi.org/10.1111/j.1469-8137.2012.04350.x
  40. Ono A, Yamaguchi K, Fukada-Tanaka S, et al (2012) A null mutation of ROS1a for DNA demethylation in rice is not transmittable to progeny. Plant J 71:564-574 https://doi.org/10.1111/j.1365-313X.2012.05009.x
  41. Ozawa K, Wakasa Y, Ogo Y, et al (2012) Development of an Efficient Agrobacterium-Mediated Gene Targeting System for Rice and Analysis of Rice Knockouts Lacking Granule- Bound Starch Synthase (Waxy) and ${\beta}1$,2-Xylosyltransferase. Plant Cell Physiol 53:755-761 https://doi.org/10.1093/pcp/pcs016
  42. Paszkowski J, Baur M, Bogucki A, Potrykus I (1988) Gene targeting in plants. EMBO J 7:4021-4026
  43. Puchta H, Fauser F (2013) Gene targeting in plants: 25 years later. Int J Dev Biol 57:629-637 https://doi.org/10.1387/ijdb.130194hp
  44. Ran FA, Hsu PD, Lin C-Y, et al (2013) Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity. Cell 154:1380-1389 https://doi.org/10.1016/j.cell.2013.08.021
  45. Remy S, Tesson L, Menoret S, et al (2010) Zinc-finger nucleases: a powerful tool for genetic engineering of animals. Transgenic Res 19:363-371 https://doi.org/10.1007/s11248-009-9323-7
  46. Schiml S, Fauser F, Puchta H (2014) The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J 80:1139-1150 https://doi.org/10.1111/tpj.12704
  47. Schuermann D, Molinier J, Fritsch O, Hohn B (2005) The dual nature of homologous recombination in plants. Trends Genet 21:172-181 https://doi.org/10.1016/j.tig.2005.01.002
  48. Schwab R, Ossowski S, Riester M, et al (2006) Highly Specific Gene Silencing by Artificial MicroRNAs in Arabidopsis. Plant Cell Online 18:1121-1133 https://doi.org/10.1105/tpc.105.039834
  49. Shan Q, Wang Y, Chen K, et al (2013a) Rapid and Efficient Gene Modification in Rice and Brachypodium Using TALENs. Mol Plant sss162
  50. Shan Q, Wang Y, Li J, et al (2013b) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686-688 https://doi.org/10.1038/nbt.2650
  51. Shukla VK, Doyon Y, Miller JC, et al (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437-441. 2 https://doi.org/10.1038/nature07992
  52. Singh SK, Roy S, Choudhury SR, Sengupta DN (2010) DNA repair and recombination in higher plants: insights from comparative genomics of arabidopsis and rice. BMC Genomics 11:443 https://doi.org/10.1186/1471-2164-11-443
  53. Symington LS, Gautier J (2011) Double-Strand Break End Resection and Repair Pathway Choice. Annu Rev Genet 45:247-271 https://doi.org/10.1146/annurev-genet-110410-132435
  54. Tanaka S, Ishii C, Hatakeyama S, Inoue H (2010) High efficient gene targeting on the AGAMOUS gene in an Arabidopsis AtLIG4 mutant. Biochem Biophys Res Commun 396:289-293 https://doi.org/10.1016/j.bbrc.2010.04.082
  55. Terada R, Johzuka-Hisatomi Y, Saitoh M, et al (2007) Gene Targeting by Homologous Recombination as a Biotechnological Tool for Rice Functional Genomics. Plant Physiol 144:846-856 https://doi.org/10.1104/pp.107.095992
  56. Terada R, Nagahara M, Furukawa K, et al (2010) Cre-loxP mediated marker elimination and gene reactivation at the waxy locus created in rice genome based on strong positive –negative selection. Plant Biotechnol 27:29-37 https://doi.org/10.5511/plantbiotechnology.27.29
  57. Terada R, Urawa H, Inagaki Y, et al (2002) Efficient gene targeting by homologous recombination in rice. Nat Biotechnol 20:1030-1034 https://doi.org/10.1038/nbt737
  58. Terns MP, Terns RM (2011) CRISPR-based adaptive immune systems. Curr Opin Microbiol 14:321-327 https://doi.org/10.1016/j.mib.2011.03.005
  59. Townsend JA, Wright DA, Winfrey RJ, et al (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459:442-445 https://doi.org/10.1038/nature07845
  60. Voytas DF (2013) Plant Genome Engineering with Sequence- Specific Nucleases. Annu Rev Plant Biol 64:327-350 https://doi.org/10.1146/annurev-arplant-042811-105552
  61. Wang Y, Yau Y-Y, Perkins-Balding D, Thomson JG (2010) Recombinase technology: applications and possibilities. Plant Cell Rep 30:267-285
  62. Yamauchi T, Johzuka-Hisatomi Y, Fukada-Tanaka S, et al (2009) Homologous recombination-mediated knock-in targeting of the MET1a gene for a maintenance DNA methyltransferase reproducibly reveals dosage-dependent spatiotemporal gene expression in rice. Plant J 60:386-396 https://doi.org/10.1111/j.1365-313X.2009.03947.x
  63. Zhang F, Maeder ML, Unger-Wallace E, et al (2010) High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci 107:12028-12033 https://doi.org/10.1073/pnas.0914991107
  64. Zhang Y, Zhang F, Li X, et al (2013) Transcription Activator-Like Effector Nucleases Enable Efficient Plant Genome Engineering. Plant Physiol 161:20-27 https://doi.org/10.1104/pp.112.205179