• Title/Summary/Keyword: DIFFERENCE

Search Result 75,443, Processing Time 0.08 seconds

A FINITE DIFFERENCE SCHEME FOR RLW-BURGERS EQUATION

  • Zhao, Xiaohong;Li, Desheng;Shi, Deming
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.3_4
    • /
    • pp.573-581
    • /
    • 2008
  • In this paper, a finite difference method for a Cauchy problem of RLW-Burgers equation was considered. Although the equation is not energy conservation, we have given its the energy conservative finite difference scheme with condition. Convergence and stability of the difference solution were proved. Numerical results demonstrate that the method is efficient and reliable.

  • PDF

Conformal transformations of difference tensors of Finsler space with an $(alpha,beta)$-metric

  • Lee, Yong-Duk
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.4
    • /
    • pp.975-984
    • /
    • 1997
  • In the Finsler space with an $(\alpha, \beta)$-metric, we can consider the difference tensors of the Finsler connection. The properties of the conformal transformation of these difference tensors are investigated in the present paper. Some conformal invariant tensors are formed in the Finsler space with an $(\alpha, \beta)$-metric related with the difference tensors.

  • PDF

ON ENTIRE SOLUTIONS OF NONLINEAR DIFFERENCE-DIFFERENTIAL EQUATIONS

  • Wang, Songmin;Li, Sheng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1471-1479
    • /
    • 2013
  • In this paper, we study the non-existence of finite order entire solutions of nonlinear differential-difference of the form $$f^n+Q(z,f)=h$$, where $n{\geq}2$ is an integer, $Q(z,f)$ is a differential-difference polynomial in $f$ with polynomial coefficients, and $h$ is a meromorphic function of order ${\leq}1$.

A FOURTH-ORDER ACCURATE FINITE DIFFERENCE SCHEME FOR THE EXTENDED-FISHER-KOLMOGOROV EQUATION

  • Kadri, Tlili;Omrani, Khaled
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.297-310
    • /
    • 2018
  • In this paper, a nonlinear high-order difference scheme is proposed to solve the Extended-Fisher-Kolmogorov equation. The existence, uniqueness of difference solution and priori estimates are obtained. Furthermore, the convergence of the difference scheme is proved by utilizing the energy method to be of fourth-order in space and second-order in time in the discrete $L^{\infty}-norm$. Some numerical examples are given in order to validate the theoretical results.

Regular Difference Covers

  • Arasu, K.T.;Bhandari, Ashwani K.;Ma, Siu-Lun;Sehgal, Surinder
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.1
    • /
    • pp.137-152
    • /
    • 2005
  • We introduce the concept of what we call "regular difference covers" and prove many nonexistence results and provide some new constructions. Although the techniques employed mirror those used to investigate difference sets, the end results in this new setting are quite different.

  • PDF

A RESERCH ON NONLINEAR (p, q)-DIFFERENCE EQUATION TRANSFORMABLE TO LINEAR EQUATIONS USING (p, q)-DERIVATIVE

  • ROH, KUM-HWAN;LEE, HUI YOUNG;KIM, YOUNG ROK;KANG, JUNG YOOG
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.3_4
    • /
    • pp.271-283
    • /
    • 2018
  • In this paper, we introduce various first order (p, q)-difference equations. We investigate solutions to equations which are linear (p, q)-difference equations and nonlinear (p, q)-difference equations. We also find some properties of (p, q)-calculus, exponential functions, and inverse function.

Stability Criterion for Volterra Type Delay Difference Equations Including a Generalized Difference Operator

  • Gevgesoglu, Murat;Bolat, Yasar
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.1
    • /
    • pp.163-175
    • /
    • 2020
  • The stability of a class of Volterra-type difference equations that include a generalized difference operator ∆a is investigated using Krasnoselskii's fixed point theorem and some results are obtained. In addition, some examples are given to illustrate our theoretical results.

LYAPUNOV FUNCTIONS FOR NONLINEAR DIFFERENCE EQUATIONS

  • Choi, Sung Kyu;Cui, Yinhua;Koo, Namjip
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.883-893
    • /
    • 2011
  • In this paper we study h-stability of the solutions of nonlinear difference system via the notion of $n_{\infty}$-summable similarity between its variational systems. Also, we show that two concepts of h-stability and h-stability in variation for nonlinear difference systems are equivalent. Furthermore, we characterize h-stability for nonlinear difference systems by using Lyapunov functions.

ON VECTOR VALUED DIFFERENCE SEQUENCE SPACES

  • Manoj Kumar;Ritu;Sandeep Gupta
    • Korean Journal of Mathematics
    • /
    • v.32 no.3
    • /
    • pp.439-451
    • /
    • 2024
  • In the present paper, using the notion of difference sequence spaces, we introduce new kind of Cesàro summable difference sequence spaces of vector valued sequences with the aid of paranorm and modulus function. In addition, we extend the notion of statistical convergence to introduce a new sequence space SC1(∆, q) which coincides with C11(X, ∆, φ, λ, q) (one of the above defined Cesàro summable difference sequence spaces) under the restriction of bounded modulus function.