• Title/Summary/Keyword: DC magnetron

Search Result 839, Processing Time 0.031 seconds

Properties of ITO Transparent Conducting Film by DC Magnetron Sputtering Method (DC 마그네트론 스퍼터법에 의한 ITO 투명전도막 특성)

  • Park, Kang-Il;Kim, Byung-Sub;Lim, Dong-Gun;Park, Gi-Yub;Kwak, Dong-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.95-98
    • /
    • 2003
  • Tin doped indium oxide(ITO) films, which is widely used as a transparent conductor in optoelectronic devices such as solar cell, liquid crystal display, plasma display panel, thermal heater, and other sensors, were prepared by using the capacitively coupled DC magnetron sputtering method. The influence of the substrate temperature, working gas pressure and deposition time on the electrical, optical and morphological properties were investigated experimentally. ITO films with the optimum growth conditions showed resistivity of $2.36{\times}10^{-4}(\Omega}-cm$ and transmittance of 86.28% for a film 680nm thick in the wavelength range of the visible spectrum.

  • PDF

A Comparative Study of TiAlN Coatings Deposited by DC and Pulsed DC Asymmetric Bipolar Magnetron Sputtering (DC 스퍼터법과 비대칭 바이폴라 펄스 DC 스퍼터법으로 증착된 TiAlN 코팅막의 물성 비교연구)

  • Chun, Sung-Yong;Lee, Tae Yang
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.4
    • /
    • pp.168-173
    • /
    • 2014
  • The paper presents the comparative results of TiAlN coatings deposited by DC and pulsed DC asymmetric bipolar magnetron sputtering systems. The results show that, with the decreasing duty cycle and increasing pulse frequency, the coating morphology changes from a columnar to a dense structure, with finer grains. Pulsed sputtered TiAlN coatings showed higher hardness, higher residual stress, and smaller grain sizes than dc prepared TiAlN coatings. Moreover residual stress of pulsed sputtered TiAlN coatings increased on increasing pulse frequency. Meanwhile, the surface roughness decreased continuously with increasing pulsed DC frequency up to 50 kHz.

A Comparative Study of NbN Coatings Deposited by DC and Pulsed DC Asymmetric Bipolar Magnetron Sputtering (DC 스퍼터법과 비대칭 바이폴라 펄스 DC 스퍼터법으로 증착된 NbN 코팅막의 물성 비교연구)

  • Chun, Sung-Yong;Oh, Bok-Hyun
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.4
    • /
    • pp.136-141
    • /
    • 2015
  • The paper presents the comparative results of NbN coatings deposited by DC and pulsed DC asymmetric bipolar magnetron sputtering systems. The results show that, with the decreasing duty cycle and increasing pulse frequency, the coating morphology changes from a columnar to a dense structure, with finer grains. The Pulsed sputtered NbN coatings showed higher hardness, higher residual stress, and smaller grain sizes than those of DC prepared NbN coatings. Moreover residual stress of pulsed sputtered NbN coatings increased on increasing pulse frequency. Meanwhile, the surface roughness decreased continuously with increasing pulsed DC frequency up to 50 kHz.

Mechanical and Structural Behaviors of HfN Thin Films Fabricated by Direct Current and Mid-frequency Magnetron Sputtering

  • Sung-Yong Chun
    • Corrosion Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.30-35
    • /
    • 2023
  • Hafnium nitride (HfN) thin films were fabricated by mid-frequency magnetron sputtering (mfMS) and direct current magnetron sputtering (dcMS) and their mechanical and structural properties were compared. In particular, changes in the HfN film properties were observed by changing the pulse frequency of mfMS between 5 kHz, 15 kHz, and 30 kHz. The crystalline structure, microstructure, 3D morphology, and mechanical properties of the HfN films were compared by x-ray diffraction, field-emission scanning electron microscopy, atomic force microscopy, and nanoindentation tester, respectively. HfN film deposited by mfMS showed a smoother and denser microstructure as the frequency increased, whereas the film deposited by dcMS showed a rough and sloppy microstructure. A single δ-HfN phase was observed in the HfN film made by mfMS with a pulse frequency of 30 kHz, but mixed δ-HfN and HfN0·4 phases were observed in the HfN film made by dcMS. The mechanical properties of HfN film made by mfMS were improved compared to film made by dcMS.

Effect of RF Superimposed DC Magnetron Sputtering on Electrical and Bending Resistances of ITO Films Deposited on PET at Low Temperature (DC마그네트론 스퍼터링법으로 PET 기판위에 저온 증착한 ITO박막의 비저항과 굽힘 저항성에 대한 RF인가의 영향)

  • Park, Mi-Rang;Lee, Sung-Hun;Kim, Do-Geun;Lee, Gun-Hwan;Song, Pung-Keun
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.5
    • /
    • pp.214-219
    • /
    • 2008
  • Indium tin oxide (ITO) films were deposited on PET substrate by RF superimposed DC magnetron sputtering using ITO (doped with 10 wt% $SnO_2$) target. Substrate temperature was maintained below $750^{\circ}C$ without intentionally substrate heating during the deposition. The discharge voltage of DC power supply was decreased from 280 V to 100 V when superimposed RF power was increased from 0 W to 150 W. The electrical properties of the ITO films were improved with increasing of superimposed RF power. In the result of cyclic bending test, relatively high mechanical property was obtained for the ITO film deposited with RF power of 75 W under DC current of 0.75 A which could be attributed to the decrease of internal stress caused by decrease in both deposition rate and plasma impedance.

The characteristics of Pt thin films prepared by DC magnetron sputter (DC Magnetron Sputter로 제조된 Pt 박막의 특성)

  • Na, Dong-Myong;Kim, Young-Bok;Park, Jin-Seong
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.159-164
    • /
    • 2007
  • Thin films of platinum were deposited on a $Al_{2}O_{3}/ONO(SiO_{2}-Si_{3}N_{4}-SiO_{2})/Si$-substrate with an 2-inch Pt(99.99 %) target at room temperature for 20, 30 and 60 min by DC magnetron sputtering, respectively X-ray diffract meter (XRD) was used to analyze the crystallanity of the thin films and field emission scanning electron microscopy (FE-SEM) was employed for the investigation on crystal growth. The densification and the grain growth of the sputtered films have a considerable effect on sputtering time and annealing temperatures. The resistance of the Pt thin films was decreased with increasing deposition time and sintering temperature. Pt micro heater thin film deposited for 60 min by DC magnetron sputtering on an $Al_{2}O_{3}$/ONO-Si substrate and annealed at $600^{\circ}C$ for 1 h in air is found to be a most suitable micro heater with a generation capacity of $350^{\circ}C$ temperature and 645 mW power at 5.0 V input voltage. Adherence of Pt thin film and $Al_{2}O_{3}$ substrate was also found excellent. This characteristic is in good agreement with the uniform densification and good crystallanity of the Pt film. Efforts are on progress to find the parameters further reduce the power consumption and the results will be presented as soon as possible.