• Title/Summary/Keyword: DC/DC Converters

Search Result 841, Processing Time 0.028 seconds

The Design of a Speed-position Controller using a Parameter Estimation Method for the Linear Brushless DC Motor (파라미터 추정방법을 이용한 선형추진브러시리스 직류전동기의 속도-위치제어기 설계)

  • 박성수;최중경;변지섭;윤성은;류정오
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.143-146
    • /
    • 2001
  • Servomotors, especially linear brushless servomotors have numerous advantages over ball screws, timing belts, rack/pinion drives and friction drives compared wi th rotary servomotors This paper proposes an linear regression method as the estimated ion of unknown parameters from the linear brushless DC motor The estimated parameters are used to tune the gain of controller. In order to agree with this purpose, Digital Signal Processor (TMS320F240), developed for implementation of the motor control, is adopted in this study. The processor playing an important role in controller has A/D converters, PWM generators, riched I/O ports internally.

  • PDF

Power-factor improvement of residential solar air-conditioner power system (가정용 태양광 에어컨 전원시스템의 역률 개선)

  • Park, Y.J.;Mun, S.P.;Park, J.W.;Suh, K.Y.;Kim, Y.M.
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.6-8
    • /
    • 2002
  • Generally in solar air conditioning system, the diode rectifier is used to build up DC link voltage from AC source. The diode rectifier is simple and cheap but it brings out the problems of low power factor and plentiful harmonics at the AC source. Also It can degrade the utilization rate of solar energy because the reverse of power flow cannot be made. Hence, in this paper to overcome the peak power problems in summer and to endure good AC input characteristics, solar air conditioning system using the PWM converter is proposed. A high input power factor of 97[%] and an efficiency of 98[%] are also obtained. The harmonic guide lines of proposed rectifier is no interfered with inverter switching, resulting in a simple, reliable and low cost ac to dc converters in comparison with the boost type current improving circuits.

  • PDF

A Fuel Cell Generation System with a New Active Clamp Sepic-Flyback Converter

  • Lee, Won-Cheol;Jang, Su-Jin;Kim, Soo-Seok;Lee, Su-Won;Won, Chung-Yuen
    • Journal of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.26-35
    • /
    • 2009
  • A high efficiency active clamp sepic-flyback converter is presented for fuel cell generation systems. The proposed converter is a superposition of a sepic converter mode and. flyback converter mode. The output voltages of the sepic converter mode and flyback converter mode can be regulated by the same PWM technique with constant frequency. By merging the sepic and flyback topologies, they can share the transformer, power MOSFET and active clamp circuit. The result has outstanding advantages over conventional active clamp DC-DC converters: high efficiency, high power density, and component utilization. Simulation results and experimental results are presented to verify the principles of operation for the proposed converter.

H-Bridge VSC with a T-Connected Transformer for a 3-Phase 4- Wire Voltage and Frequency Controller of an Isolated Asynchronous Generator

  • Kasal, Gaurav Kumar;Singh, Bhim
    • Journal of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.43-50
    • /
    • 2009
  • This paper deals with a novel solid state controller (NSSC) for an isolated asynchronous generator (IAG) feeding 3-phase 4-wire loads driven by constant power prime movers, such as uncontrolled pico hydro turbines. AC capacitor banks are used to meet the reactive power requirement of the asynchronous generator. The proposed NSSC is realized using a set of IGBTs (Insulated gate bipolar junction transistors) based current controlled 2-leg voltage source converters (CC- VSC) and a DC chopper at its DC bus, which keeps the generated voltage and frequency constant in spite of changes in consumer loads. The neutral point of the load is created using aT-configuration of the transformers. The IAG system is modeled in MATLAB along with Simulink and PSB (power system block set) toolboxes. The simulated results are presented to demonstrate the capability of the isolated generating system consisting of NSSC and IAG driven by uncontrolled pico hydro turbine and feeding 3-phase 4-wire loads.

Lossless Snubber with Minimum Voltage Stress for Continuous Current Mode Tapped-Inductor Boost Converters for High Step-up Applications

  • Kang, Jeong-Il;Han, Sang-Kyoo;Han, Jonghee
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.621-631
    • /
    • 2014
  • To invigorate the tapped-inductor boost (TIB) topology in emerging high step-up applications for off-grid products, a lossless snubber consisting of two capacitors and three diodes is proposed. Since the switch voltage stress is minimized in the proposed circuit, it is allowed to use a device with a lower cost, higher efficiency, and higher availability. Moreover, since the leakage inductance is fully utilized, no effort to minimize it is required. This allows for a highly productive and cost-effective design of the tapped-inductor. The proposed circuit also shows a high step-up ratio and provides relaxation of the switching loss and diode reverse-recovery. In this paper, the operation is analyzed in detail, the steady-state equation is derived, and the design considerations are discussed. Some experimental results are provided to confirm the validity of the proposed circuit.

Analysis and Design of a High-Efficiency Boundary Conduction Mode Tapped-Inductor Boost LED Driver for Mobile Products

  • Kang, Jeong-Il;Han, Sang-Kyoo;Han, Jonghee
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.632-640
    • /
    • 2014
  • For low-power high-frequency LED driver applications in small form factor mobile products, a high-efficiency boundary conduction mode tapped-inductor boost converter is proposed. In the proposed converter, the switch and the diode achieve soft-switching, the diode reverse-recovery is alleviated, and the switching frequency is very insensitive to output voltage variations. The circuit is quantitatively characterized, and the design guidelines are presented. Experimental results from an LED backlight driver prototype for a 14 inch notebook computer are also presented.

Digital Control of Secondary Active Clamp Phase-Shifted Full-Bridge Converters

  • Che, Yanbo;Ma, Yage;Ge, Shaoyun;Zhu, Dong
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.421-431
    • /
    • 2014
  • A DSP-based self-adaptive proportional-integral (PI) controller to control a DC-DC converter is proposed in this paper. The full-bridge topology is adopted here to obtain higher power output capability and higher conversion efficiency. The converter adopts the zero-voltage-switching (ZVS) technique to reduce the conduction losses. A parallel secondary active clamp circuit is added to deal with the voltage overshoot and ringing effect on the transformer's secondary side. A self-adaptive PI controller is proposed to replace the traditional PI controller. Moreover, the designed converter adopts the constant-current and constant-voltage (CC-CV) output control strategy. The secondary active clamp mechanism is discussed in detail. The effectiveness of the proposed converter was experimentally verified by an IGBT-based 10kW prototype.

Two-Stage Charge Equalization Scheme for Hybrid Electric Vehicle Lithium-Ion Battery Cells

  • Park, Hong-Sun;Kim, Chong-Eun;Moon, Gun-Woo;Lee, Joong-hui
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.241-243
    • /
    • 2007
  • Two-stage charge equalization scheme for HEV lithium-ion battery string is proposed with the optimal power rating design rule in this paper, where in the first stage the over charged energy of higher voltage cells is drawn out to the single common output capacitor and then, that discharged energy is recovered into the overall battery stack in the second stage. To achieve charge equalization of sort, the conventional flyback DC/DC converters of low power and minimized size are employed. The industrial sample employing both the proposed two-stage cell balancing scheme and the optimal power rating design rule shows good cell balancing performance with reduced size as well as low voltage stresses of the electronic devices.

  • PDF

Circulating current control using the DC-link voltage deviation for the parallel connected three-level NPC converters (병렬형 3상 3레벨 NPC 컨버터의 DC단 불평형을 이용한 순환전류 저감)

  • Park, Jung-Hoon;Jung, Jun-Hyung;Son, Yeong-Deuk;Kim, Jang-Mok
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.168-169
    • /
    • 2017
  • 본 논문에서는 ZCMV(zero common mode voltage) PWM을 사용하는 병렬형 3상 3레벨 NPC 컨버터의 DC단 전압의 불평형 제어를 이용한 순환전류 저감 알고리즘을 제안한다. 이상적으로 ZCMV PWM은 공통 모드 전압을 발생하지 않지만, 초기 운전 및 데드타임과 같은 실제적인 문제로 인해 공통 모드 전압이 발생한다. 발생한 공통 모드 전압은 미세한 순환전류를 발생시키며 이는 컨버터의 효율을 감소시킨다. 따라서, 본 논문에서는 DC단 전압 불평형 제어를 이용하여 순환전류를 저감하는 제어 알고리즘을 제안한다. 상, 하단 DC 전압의 불평형은 공통 모드 전압을 발생시키며 이를 통해 미세하게 발생한 순환전류를 저감하여 컨버터의 효율을 향상 시킬 수 있다. 제안한 알고리즘은 시뮬레이션을 통해 타당함을 검증하였다.

  • PDF

Low-Cost Single-Phase to Three-Phase PWM Converters for Induction Motor Drives (유도전동기 구동을 위한 저가형 단상-3상 AC/DC/AC PWM 컨버터)

  • Kim Tae-Yun;Lee Dong-Choon;Seok Jul-Ki
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.201-204
    • /
    • 2001
  • In this paper, a single-phase to three-phase PWM converter topology using six switches only for low cost induction motor drive is proposed. The converter topology is of lower cost than the conventional one, which gives sinusoidal input current, unity power factor, dc output voltage control and bidirectional power flow In addition, the source voltage sensor is eliminated by controlling the deviation between the model current and the system current to be zero. The performance of the proposed converter has been demonstrated through the computer simulation.

  • PDF