• Title/Summary/Keyword: D latch

Search Result 58, Processing Time 0.025 seconds

A 0.16㎟ 12b 30MS/s 0.18um CMOS SAR ADC Based on Low-Power Composite Switching (저전력 복합 스위칭 기반의 0.16㎟ 12b 30MS/s 0.18um CMOS SAR ADC)

  • Shin, Hee-Wook;Jeong, Jong-Min;An, Tai-Ji;Park, Jun-Sang;Lee, Seung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.7
    • /
    • pp.27-38
    • /
    • 2016
  • This work proposes a 12b 30MS/s 0.18um CMOS SAR ADC based on low-power composite switching with an active die area of $0.16mm^2$. The proposed composite switching employs the conventional $V_{CM}$-based switching and monotonic switching sequences while minimizing the switching power consumption of a DAC and the dynamic offset to constrain a linearity of the SAR ADC. Two equally-divided capacitors topology and the reference scaling are employed to implement the $V_{CM}$-based switching effectively and match an input signal range with a reference voltage range in the proposed C-R hybrid DAC. The techniques also simplify the overall circuits and reduce the total number of unit capacitors up to 64 in the fully differential version of the prototype 12b ADC. Meanwhile, the SAR logic block of the proposed SAR ADC employs a simple latch-type register rather than a D flip-flop-based register not only to improve the speed and stability of the SAR operation but also to reduce the area and power consumption by driving reference switches in the DAC directly without any decoder. The measured DNL and INL of the prototype ADC in a 0.18um CMOS are within 0.85LSB and 2.53LSB, respectively. The ADC shows a maximum SNDR of a 59.33dB and a maximum SFDR of 69.83dB at 30MS/s. The ADC consumes 2.25mW at a 1.8V supply voltage.

Design of a Small Area 12-bit 300MSPS CMOS D/A Converter for Display Systems (디스플레이 시스템을 위한 소면적 12-bit 300MSPS CMOS D/A 변환기의 설계)

  • Shin, Seung-Chul;Moon, Jun-Ho;Song, Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.4
    • /
    • pp.1-9
    • /
    • 2009
  • In this paper, a small area 12-bit 300MSPS CMOS Digital-to-Analog Converter(DAC) is proposed for display systems. The architecture of the DAC is based on a current steering 6+6 segmented type, which reduces non-linearity error and other secondary effects. In order to improve the linearity and glitch noise, an analog current cell using monitoring bias circuit is designed. For the purpose of reducing chip area and power dissipation, furthermore, a noble self-clocked switching logic is proposed. To verify the performance, it is fabricated with $0.13{\mu}m$ thick-gate 1-poly 6-metal N-well Samsung CMOS technology. The effective chip area is $0.26mm^2$ ($510{\mu}m{\times}510{\mu}m$) with 100mW power consumption. The measured INL (Integrated Non Linearity) and DNL (Differential Non Linearity) are within ${\pm}3LSB$ and ${\pm}1LSB$, respectively. The measured SFDR is about 70dB, when the input frequency is 15MHz at 300MHz clock frequency.

A 10b 100MS/s 27.2mW $0.8mm^2$ 0.18um CMOS Pipeline ADC with Various Circuit Sharing Schemes (다양한 회로 공유기법을 사용하는 10비트 100MS/s 27.2mW $0.8mm^2$ 0.18um CMOS Pipeline ADC)

  • Yoon, Kun-Yong;Lee, Se-Won;Choi, Min-Ho;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.4
    • /
    • pp.53-63
    • /
    • 2009
  • This work proposes a 10b 100MS/s 27.2mW $0.8mm^2$ 0.18um CMOS ADC for WLAN such as an IEEE 802.11n standard. The proposed ADC employs a three-stage pipeline architecture and minimizes power consumption and chip area by sharing as many circuits as possible. Two multiplying DACs share a single amplifier without MOS switches connected in series while the shared amplifier does not show a conventional memory effect. All three flash ADCs use only one resistor ladder while the second and third flash ADCs share all pre-amps to further reduce power consumption and chip area. The interpolation circuit employed in the flash ADCs halves the required number of pre-amps and an input-output isolated dynamic latch reduces the increased kickback noise caused by the pre-amp sharing. The prototype ADC implemented in a 0.18um n-well 1P6M CMOS process shows the DNL and INL within 0.83LSB and 1.52LSB at 10b, respectively. The ADC measures an SNDR of 52.1dB and an SFDR of 67.6dB at a sampling rate of 100MS/s. The ADC with an active die area of $0.8mm^2$ consumes 27.2mW at 1.8V and 100MS/s.

A Low Noise Phase Locked Loop with Cain-boosting Charge Pump (Cain-boosting 전하펌프를 이용한 저잡음 위상고정루프)

  • Choi Young-Shig;Han Dae-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.2
    • /
    • pp.301-306
    • /
    • 2005
  • In this paper, a gain-boosting charge pump(CP) and a latch type voltage controlled oscillato.(VCO) with voltage controlled resistor(VCR) were proposed. The gain-boosting CP achieves good .current matching of less than 11$mu$V voltage difference between 43$mu$V and 32$mu$V in its output range from 0.8V to 2.3V. The VCO with VCR shows good linear characteristics over the range from 1V to 3V. The fabricated VCO exhibits -108dBc/Hz phase noise at a 100kHz and is comparable to that of the integrated LC-tank oscillator. The phase locked loop(PLL) with new circuits was simulated in a 0.35$mu$m CMOS process and showed 150$mu$s locking time.

HAUSAT-2 SATELLITE RADIATION ENVIRONMENT ANALYSIS AND SOFTWARE RAMMING CODE EDAC IMPLEMENTATION (HAUSAT-2 위성의 방사능 환경해석 및 소프트웨어 HAMMING CODE EDAC의 구현에 관한 연구)

  • Jung, Ji-Wan;Chang, Young-Keun
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.4
    • /
    • pp.537-558
    • /
    • 2005
  • This paper addresses the results of HAUSAT-2 radiation environment and effect analyses, including TID and SEE analyses. Trapped proton and electron, solar proton, galactic cosmic ray models were considered for HAUSAT-2 TID radiation environment analysis. TID was analyzed through total dose-depth curve and the radiation tolerance of TID for HAUSAT-2 components was verified by using DMBP method and sectoring analysis. HAUSAT-2 LET spectrum for heavy ion and proton were also analyzed for SEE investigation. SEE(SEU, SEL) analyses were accomplished for MPC860T2B microprocessor and K6X8008T2B memory. It was estimated that several SEUs may occur without SEL during the HAUSAT-2 mission life(2 years). Software Hamming Code EDAC has been implemented to detect and correct the SEU. In this study, all radiation analyses were conducted by using SPENVIS software.

Development of Walking Type Chinese Cabbage Transplanter (보행형 배추정식기 개발)

  • Park S. H.;Kim J. Y.;Choi D. K.;Kim C. K.;Kwak T. Y.;Cho S. C.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.2 s.109
    • /
    • pp.81-88
    • /
    • 2005
  • Manual transplanting Chinese cabbage needs 184 hours per ha in Korea. Mechanization of Chinese cabbage transplanting operation has been highly required because it needs highly intensive labor during peak season. This study was conducted to developed walking-type Chinese cabbage transplanter. In order to find out design factor of the transplanter, a kinematic analysis software, RecurDyn, was used. The prototype was tested in the circular soil bin and its operating motion was captured and analyzed using high speed camera system. Prototype was one row type which utilized original parts of engine, transmission and etc. from walking-type rice transplanter in order to save the manufacturing cost. Success ratio of pick-up device of hole-pin type and latch type were $96.0\%$ and $99.2\%$, respectively. which was highly affected by feeding accuracy of feeding device of seedling. Transplanting device of the prototype produced a elliptic loci which were coincident with those produced by the computer simulation. Prototype proved good performance in transplanting with mulching and without mulching operation, either. Working performance of prototype was 22 hours per ha and operation cost of the prototype was 961,757 won per ha. So, it would reduce $88\%$ of the labor and $29\%$ of operation cost.

Implementation of the Digital Current Control System for an Induction Motor Using FPGA (FPGA를 이용한 유도 전동기의 디지털 전류 제어 시스템 구현)

  • Yang, Oh
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.11
    • /
    • pp.21-30
    • /
    • 1998
  • In this paper, a digital current control system using a FPGA(Field Programmable Gate Array) was implemented, and the system was applied to an induction motor widely used as an industrial driving machine. The FPGA designed by VHDL(VHSIC Hardware Description Language) consists of a PWM(Pulse Width Modulation) generation block, a PWM protection block, a speed measuring block, a watch dog timer block, an interrupt control block, a decoder logic block, a wait control block and digital input and output blocks respectively. Dedicated clock inputs on the FPGA were used for high-speed execution, and an up-down counter and a latch block were designed in parallel, in order that the triangle wave could be operated at 40 MHz clock. When triangle wave is compared with many registers respectively, gate delay occurs from excessive fan-outs. To reduce the delay, two triangle wave registers were implemented in parallel. Amplitude and frequency of the triangle wave, and dead time of PWM could be changed by software. This FPGA was synthesized by pASIC 2SpDE and Synplify-Lite synthesis tool of Quick Logic company. The final simulation for worst cases was successfully performed under a Verilog HDL simulation environment. And the FPGA programmed for an 84 pin PLCC package was applied to digital current control system for 3-phase induction motor. The digital current control system of the 3 phase induction motor was configured using the DSP(TMS320C31-40 MHz), FPGA, A/D converter and Hall CT etc., and experimental results showed the effectiveness of the digital current control system.

  • PDF

A 10b 50MS/s Low-Power Skinny-Type 0.13um CMOS ADC for CIS Applications (CIS 응용을 위해 제한된 폭을 가지는 10비트 50MS/s 저 전력 0.13um CMOS ADC)

  • Song, Jung-Eun;Hwang, Dong-Hyun;Hwang, Won-Seok;Kim, Kwang-Soo;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.5
    • /
    • pp.25-33
    • /
    • 2011
  • This work proposes a skinny-type 10b 50MS/s 0.13um CMOS three-step pipeline ADC for CIS applications. Analog circuits for CIS applications commonly employ a high supply voltage to acquire a sufficiently acceptable dynamic range, while digital circuits use a low supply voltage to minimize power consumption. The proposed ADC converts analog signals in a wide-swing range to low voltage-based digital data using both of the two supply voltages. An op-amp sharing technique employed in residue amplifiers properly controls currents depending on the amplification mode of each pipeline stage, optimizes the performance of op-amps, and improves the power efficiency. In three FLASH ADCs, the number of input stages are reduced in half by the interpolation technique while each comparator consists of only a latch with low kick-back noise based on pull-down switches to separate the input nodes and output nodes. Reference circuits achieve a required settling time only with on-chip low-power drivers and digital correction logic has two kinds of level shifter depending on signal-voltage levels to be processed. The prototype ADC in a 0.13um CMOS to support 0.35um thick-gate-oxide transistors demonstrates the measured DNL and INL within 0.42LSB and 1.19LSB, respectively. The ADC shows a maximum SNDR of 55.4dB and a maximum SFDR of 68.7dB at 50MS/s, respectively. The ADC with an active die area of 0.53$mm^2$ consumes 15.6mW at 50MS/s with an analog voltage of 2.0V and two digital voltages of 2.8V ($=D_H$) and 1.2V ($=D_L$).