• Title/Summary/Keyword: D(X)

Search Result 6,323, Processing Time 0.038 seconds

Schema Definition and Implementation for Web3D Physical Units (웹3D 물리 단위 스키마 정의와 구현)

  • Kim, Lee-Hyun;Park, Chang-Sup;Lee, Myeong-Won
    • Journal of the Korea Computer Graphics Society
    • /
    • v.16 no.3
    • /
    • pp.11-19
    • /
    • 2010
  • This paper describes how to define and implement the schema for 3D virtual objects with physical units so that the objects can be compared in virtual environments based on physical properties, such as length, according to the specified units. We define physical units for virtual objects using the International System of Units and based on the X3D (Extensible 3D) specification. The schema must be defined with validation so that it does not violate the original X3D data structure. In this paper, we have extended the original X3D schema with a physical unit specification, and demonstrate the difference between units-specified and non-units-specified 3D scenes using an X3D browser that we developed.

KRONECKER FUNCTION RINGS AND PRÜFER-LIKE DOMAINS

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.20 no.4
    • /
    • pp.371-379
    • /
    • 2012
  • Let D be an integral domain, $\bar{D}$ be the integral closure of D, * be a star operation of finite character on D, $*_w$ be the so-called $*_w$-operation on D induced by *, X be an indeterminate over D, $N_*=\{f{\in}D[X]{\mid}c(f)^*=D\}$, and $Kr(D,*)=\{0\}{\cup}\{\frac{f}{g}{\mid}0{\neq}f,\;g{\in}D[X]$ and there is an $0{\neq}h{\in}D[X]$ such that $(c(f)c(h))^*{\subseteq}(c(g)c(h))^*$}. In this paper, we show that D is a *-quasi-Pr$\ddot{u}$fer domain if and only if $\bar{D}[X]_{N_*}=Kr(D,*_w)$. As a corollary, we recover Fontana-Jara-Santos's result that D is a Pr$\ddot{u}$fer *-multiplication domain if and only if $D[X]_{N_*} = Kr(D,*_w)$.

STRONG UNIQUE CONTINUATION OF THE SCHR$\"{O}$DINGER OPERATOR

  • Kim, Yonne-Mi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.55-60
    • /
    • 1994
  • It is well known that if P(x,D) is an elliptic differential operator, with real analytic coefficients, and P(x,D)u = 0 in an open, connected subset .ohm..mem.R$^{n}$ , then u is real analytic in .ohm. Hence, if there exists x$_{0}$ .mem..ohm. such that u vanishes of .inf. order at x$_{0}$ , u must be identically 0. If a differential operator P(x, D) has the above property, we say that p(x,D) has the strong unique continuation property (s.u.c.p.). If, on the other hand, P(x,D)u = 0 in .ohm., and u = 0 in .ohm.', an open subset of .ohm., implies that u = 0 in .ohm. we say that P(x,D)u = 0 in .ohm., and suppu .contnd. K .contnd. .ohm implies that u = 0 in .ohm. we sat that P(x,D) has the weak unique continuation property (m.u.c.p.).

  • PDF

Effects of the X Chromosome on the Formation of Sex Comb and Genital Aech in the Hybrids between Drosophila simulans and D. Mauritiana (Drosophila simulans와 D. mauritiana 사이 종간잡종의 성즐과 생식궁 형성에 미치는 X 염색체의 효과)

  • 최영현;유미애;이원호
    • Korean journal of applied entomology
    • /
    • v.35 no.3
    • /
    • pp.216-220
    • /
    • 1996
  • Drosophila simulans and D. mauritiana are sibling species, the former cosmopolitan and the latter restricted to the oceanic island of Mauritius. Sex comb-tooth number of male flies of D. simulans were about 9.83, while those of D. mauritiana were 12.90. Genital arch of D. simulans is large semicircular shaped expasion, while that of D. mauritiana is a narrow fingerlike expansion. We used classical genetic analysis to measure effects of genes on the X chromosome responsible for numeral and morphological differences in sex comb-tooth and genital arch between these species, respectively. For these purposes, mutant strain of D. simulans and wild type strain of D. mauritiana were hybridized and males of the FI and the backcrossed progenies were compared with two characters above mentioned. The sex comb-tooth number of F, males were about 11.79, and the genitalia of F, male were intermediate in shape between those of D. simulans and D. mauritiana. Genetic analysis of sex comb-tooth number and genital arches differing between D. simulans and D. mauritiana showed that very little diffemce was due to effect of the X chromosome.

  • PDF

VOLUME MEAN OPERATOR AND DIFFERENTIATION RESULTS ASSOCIATED TO ROOT SYSTEMS

  • Rejeb, Chaabane
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1981-1990
    • /
    • 2017
  • Let R be a root system in $\mathbb{R}^d$ with Coxeter-Weyl group W and let k be a nonnegative multiplicity function on R. The generalized volume mean of a function $f{\in}L^1_{loc}(\mathbb{R}^d,m_k)$, with $m_k$ the measure given by $dmk(x):={\omega}_k(x)dx:=\prod_{{\alpha}{\in}R}{\mid}{\langle}{\alpha},x{\rangle}{\mid}^{k({\alpha})}dx$, is defined by: ${\forall}x{\in}\mathbb{R}^d$, ${\forall}r$ > 0, $M^r_B(f)(x):=\frac{1}{m_k[B(0,r)]}\int_{\mathbb{R}^d}f(y)h_k(r,x,y){\omega}_k(y)dy$, where $h_k(r,x,{\cdot})$ is a compactly supported nonnegative explicit measurable function depending on R and k. In this paper, we prove that for almost every $x{\in}\mathbb{R}^d$, $lim_{r{\rightarrow}0}M^r_B(f)(x)= f(x)$.

VIABILITY FOR SEMILINEAR DIFFERENTIAL EQUATIONS OF RETARDED TYPE

  • Dong, Qixiang;Li, Gang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.731-742
    • /
    • 2007
  • Let X be a Banach space, $A:D(A){\subset}X{\rightarrow}X$ the generator of a compact $C_0-semigroup\;S(t):X{\rightarrow}X,\;t{\geq}0$, D a locally closed subset in X, and $f:(a,b){\times}C([-q,0];X){\rightarrow}X$ a function of Caratheodory type. The main result of this paper is that a necessary and sufficient condition in order that D be a viable domain of the semi linear differential equation of retarded type $$u#(t)=Au(t)+f(t,u_t),\;t{\in}[t_0,\;t_0+T],{u_t}_0={\phi}{\in}C([-q,0];X)$$ is the tangency condition $$\limits_{h{\downarrow}0}^{lim\;inf\;h^{-1}d(S(h)v(0)+hf(t,v);D)=0}$$ for almost every $t{\in}(a,b)$ and every $v{\in}C([-q,0];X)\;with\;v(0){\in}D$.

HYPERCYCLICITY ON INVARIANT SUBSPACES

  • Petersson, Henrik
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.903-921
    • /
    • 2008
  • A continuous linear operator $T\;:\;X{\rightarrow}X$ is called hypercyclic if there exists an $x\;{\in}\;X$ such that the orbit ${T^nx}_{n{\geq}0}$ is dense. We consider the problem: given an operator $T\;:\;X{\rightarrow}X$, hypercyclic or not, is the restriction $T|y$ to some closed invariant subspace $y{\subset}X$ hypercyclic? In particular, it is well-known that any non-constant partial differential operator p(D) on $H({\mathbb{C}}^d)$ (entire functions) is hypercyclic. Now, if q(D) is another such operator, p(D) maps ker q(D) invariantly (by commutativity), and we obtain a necessary and sufficient condition on p and q in order that the restriction p(D) : ker q(D) $\rightarrow$ ker q(D) is hypercyclic. We also study hypercyclicity for other types of operators on subspaces of $H({\mathbb{C}}^d)$.

REGULARITY OF GENERALIZED DERIVATIONS IN BCI-ALGEBRAS

  • Muhiuddin, G.
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.229-235
    • /
    • 2016
  • In this paper we study the regularity of inside (or outside) (${\theta},{\phi}$)-derivations in BCI-algebras X and prove that let $d_{({\theta},{\phi})}:X{\rightarrow}X$ be an inside (${\theta},{\phi}$)-derivation of X. If there exists a ${\alpha}{\in}X$ such that $d_{({\theta},{\phi})}(x){\ast}{\theta}(a)=0$, then $d_{({\theta},{\phi})}$ is regular for all $x{\in}X$. It is also shown that if X is a BCK-algebra, then every inside (or outside) (${\theta},{\phi}$)-derivation of X is regular. Furthermore the concepts of ${\theta}$-ideal, ${\phi}$-ideal and invariant inside (or outside) (${\theta},{\phi}$)-derivations of X are introduced and their related properties are investigated. Finally we obtain the following result: If $d_{({\theta},{\phi})}:X{\rightarrow}X$ is an outside (${\theta},{\phi}$)-derivation of X, then $d_{({\theta},{\phi})}$ is regular if and only if every ${\theta}$-ideal of X is $d_{({\theta},{\phi})}$-invariant.