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REGULARITY OF GENERALIZED DERIVATIONS IN

BCI-ALGEBRAS

G. Muhiuddin

Abstract. In this paper we study the regularity of inside (or outside)
(θ, φ)-derivations in BCI-algebras X and prove that let d(θ,φ) : X → X

be an inside (θ, φ)-derivation of X. If there exists a ∈ X such that
d(θ,φ)(x) ∗ θ(a) = 0, then d(θ,φ) is regular for all x ∈ X. It is also

shown that if X is a BCK-algebra, then every inside (or outside) (θ, φ)-
derivation of X is regular. Furthermore the concepts of θ-ideal, φ-ideal
and invariant inside (or outside) (θ, φ)-derivations of X are introduced
and their related properties are investigated. Finally we obtain the fol-
lowing result: If d(θ,φ) : X → X is an outside (θ, φ)-derivation of X, then
d(θ,φ) is regular if and only if every θ-ideal of X is d(θ,φ)-invariant.

1. Introduction

Throughout the present paperX will denote a BCI-algebra unless otherwise
mentioned. Jun and Xin [4] defined the notion of derivation on BCI-algebras
as follows: A self map d : X → X is called a left-right derivation (briefly an
(l, r)-derivation) of X if d(x ∗ y) = d(x) ∗ y ∧ x ∗ d(y) holds for all x, y ∈ X .
Similarly, a self map d : X → X is called a right-left derivation (briefly an (r, l)-
derivation) of X if d(x∗y) = x∗d(y)∧d(x)∗y holds for all x, y ∈ X . Moreover,
if d is both (l, r)- and (r, l)-derivations, it is a derivation on X . Following [11],
a self map df : X → X is said to be a left-right f -derivation or an (l, r)-f -
derivation of X if it satisfies the identity df (x ∗ y) = df (x) ∗ f(y)∧ f(x) ∗ df (y)
for all x, y ∈ X . Similarly, a self map df : X → X is said to be a right-left
f -derivation or an (r, l)-f -derivation of X if it satisfies the identity df (x ∗ y) =
f(x)∗df (y)∧df (x)∗f(y) for all x, y ∈ X . Moreover, if df is both (l, r) and (r, l)-
f -derivations, it is said that df is an f -derivation, where f is an endomorphism.
Over the past decade, a number of research papers have been devoted to the
study of various kinds of derivations in BCI-algebras (see for example, [2, 4, 7,
8, 9, 10, 11] where further references can be found).
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The purpose of this paper is to study the regularity of inside (or outside)
(θ, φ)-derivations in BCI-algebras X and their useful properties. We prove
that let d(θ,φ) : X → X be an inside (θ, φ)-derivation of X and if there exists
a ∈ X such that d(θ,φ)(x) ∗ θ(a) = 0, then d(θ,φ) is regular for all x ∈ X . It is
also shown that if X is a BCK-algebra, then every inside (or outside) (θ, φ)-
derivation of X is regular. Furthermore we introduce the concepts of θ-ideal,
φ-ideal and invariant inside (or outside) (θ, φ)-derivations ofX and investigated
their related properties. We also prove that if d(θ,φ) : X → X is an outside
(θ, φ)-derivation of X , then d(θ,φ) is regular if and only if every θ-ideal of X is
d(θ,φ)-invariant.

2. Preliminaries

A nonempty set X with a constant 0 and a binary operation ∗ is called a
BCI-algebra if for all x, y, z ∈ X the following conditions hold:

(I) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0.
(II) (x ∗ (x ∗ y)) ∗ y = 0.
(III) x ∗ x = 0.
(IV) x ∗ y = 0 and y ∗ x = 0 imply x = y.

A BCI-algebra X has the following properties: For all x, y, z ∈ X

(a1) x ∗ 0 = x.
(a2) (x ∗ y) ∗ z = (x ∗ z) ∗ y.
(a3) x ≤ y implies x ∗ z ≤ y ∗ z and z ∗ y ≤ z ∗ x.
(a4) (x ∗ z) ∗ (y ∗ z) ≤ x ∗ y.
(a5) x ∗ (x ∗ (x ∗ y)) = x ∗ y.
(a6) 0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y).
(a7) x ∗ 0 = 0 implies x = 0.

For a BCI-algebra X , denote the BCK-part (resp. the BCI-G part) of X
by X+ (resp. G(X)), i.e., X+ is the set of all x ∈ X such that 0 ≤ x (resp.
G(X) := {x ∈ X | 0 ∗ x = x}). Note that G(X) ∩ X+ = {0} (see [3]). If
X+ = {0}, then X is called a p-semisimple BCI-algebra. In a p-semisimple
BCI-algebra X , the following hold: For all x, y, z, a, b ∈ X

(a8) (x ∗ z) ∗ (y ∗ z) = x ∗ y.
(a9) 0 ∗ (0 ∗ x) = x.

(a10) x ∗ (0 ∗ y) = y ∗ (0 ∗ x).
(a11) x ∗ y = 0 implies x = y.
(a12) x ∗ a = x ∗ b implies a = b.
(a13) a ∗ x = b ∗ x implies a = b.
(a14) a ∗ (a ∗ x) = x.

Let X be a p-semisimple BCI-algebra. We define addition “+” as x + y =
x ∗ (0 ∗ y) for all x, y ∈ X . Then (X,+) is an abelian group with identity 0 and
x − y = x ∗ y. Conversely let (X,+) be an abelian group with identity 0 and
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let x∗ y = x− y. Then X is a p-semisimple BCI-algebra and x+ y = x∗ (0 ∗ y)
for all x, y ∈ X (see [6]).

For a BCI-algebraX we denote x∧y = y∗(y∗x), in particular 0∗(0∗x) = ax,
and Lp(X) := {a ∈ X | x ∗ a = 0 ⇒ x = a, ∀x ∈ X}. We call the elements
of Lp(X) the p-atoms of X . For any a ∈ X , let V (a) := {x ∈ X | a ∗ x = 0},
which is called the branch of X with respect to a. It follows that x∗y ∈ V (a∗b)
whenever x ∈ V (a) and y ∈ V (a) for all x, y ∈ X and all a, b ∈ Lp(X). Note
that Lp(X) = {x ∈ X | ax = x}, which is the p-semisimple part of X , and X
is a p-semisimple BCI-algebra if and only if Lp(X) = X (see [5, Proposition
3.2]). Note also that ax ∈ Lp(X), i.e., 0 ∗ (0 ∗ ax) = ax, which implies that
ax ∗y ∈ Lp(X) for all y ∈ X . It is clear that G(X) ⊂ Lp(X), and x∗ (x∗a) = a
and a ∗ x ∈ Lp(X) for all a ∈ Lp(X) and all x ∈ X . For more details, refer to
[1, 3, 5, 6].

3. Regularity of generalized derivations

To develop our main results we recall the following:

Definition 3.1 ([10]). Let θ and φ be two endomorphisms of X . A self map
d(θ,φ) : X → X is called

(1) an inside (θ, φ)-derivation of X if it satisfies:

(3.1) (∀x, y ∈ X)
(

d(θ,φ)(x ∗ y) =
(

d(θ,φ)(x) ∗ θ(y)
)

∧
(

φ(x) ∗ d(θ,φ)(y)
))

,

(2) an outside (θ, φ)-derivation of X if it satisfies:

(3.2) (∀x, y ∈ X)
(

d(θ,φ)(x ∗ y) =
(

θ(x) ∗ d(θ,φ)(y)
)

∧
(

d(θ,φ)(x) ∗ φ(y)
))

,

(3) a (θ, φ)-derivation of X if it is both an inside (θ, φ)-derivation and an
outside (θ, φ)-derivation.

Example 3.2 ([10]). Consider a BCI-algebra X = {0, a, b} with the following
Cayley table:

∗ 0 a b
0 0 0 b
a a 0 b
b b b 0

Define a map

d(θ,φ) : X → X, x 7→

{

b if x ∈ {0, a},
0 if x = b,

and define two endomorphisms

θ : X → X, x 7→

{

0 if x ∈ {0, a},
b if x = b,

and φ : X → X such that φ(x) = x for all x ∈ X.
It is routine to verify that d(θ,φ) is both an inside (θ, φ)-derivation and an

outside (θ, φ)-derivation of X.
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Lemma 3.3 ([10]). For any outside (θ, φ)-derivation d(θ,φ) of a BCI-algebra
X, the following are equivalent:

(1) (∀x ∈ X)
(

d(θ,φ)(x) = θ(x) ∧ d(θ,φ)(x)
)

.
(2) d(θ,φ)(0) = 0.

Definition 3.4. Let d(θ,φ) : X → X be an inside (or outside) (θ, φ)-derivation
of a BCK/BCI-algebra X . Then d(θ,φ) is said to be regular if d(θ,φ)(0) = 0.

Example 3.5. The inside (or outside) (θ, φ)-derivation d(θ,φ) of X in Example
3.2 is not regular.

Proposition 3.6. Let d(θ,φ) be a regular outside (θ, φ)-derivation of a BCI-
algebra X. Then

(1) Both θ(x) and d(θ,φ)(x) belong to the same branch for all x ∈ X.

(2) (∀x ∈ X)
(

d(θ,φ)(x) ≤ θ(x)
)

.

(3) (∀x, y ∈ X)
(

d(θ,φ)(x) ∗ θ(y) ≤ θ(x) ∗ d(θ,φ)(y)
)

.

Proof. (1) For any x ∈ X, we get

0 = d(θ,φ)(0) = d(θ,φ)(ax ∗ x)

=
(

θ(ax) ∗ d(θ,φ)(x)
)

∧
(

d(θ,φ)(ax) ∗ φ(x)
)

=
(

d(θ,φ)(ax) ∗ φ(x)
)

∗
((

d(θ,φ)(ax) ∗ φ(x)
)

∗
(

θ(ax) ∗ d(θ,φ)(x)
))

= θ(ax) ∗ d(θ,φ)(x)

since θ(ax) ∗ d(θ,φ)(x) ∈ Lp(X). Hence θ(ax) ≤ d(θ,φ)(x), and so d(θ,φ)(x) ∈
V (θ(ax)). Obviously, θ(x) ∈ V (θ(ax)).

(2) Since d(θ,φ) is regular, d(θ,φ)(0) = 0. It follows from Lemma 3.3 that

d(θ,φ)(x) = θ(x) ∧ d(θ,φ)(x) ≤ θ(x).

(3) Since d(θ,φ)(x) ≤ θ(x) for all x ∈ X, we have

d(θ,φ)(x) ∗ θ(y) ≤ θ(x) ∗ θ(y) ≤ θ(x) ∗ d(θ,φ)(y)

by (a3). �

If we take θ = φ = f in Proposition 3.6, then we have the following corollary.

Corollary 3.7 ([11]). If df is a regular (r, l)-f -derivation of a BCI-algebra
X, then both f(x) and df (x) belong to the same branch for all x ∈ X.

Now we provide conditions for an inside (or outside) (θ, φ)-derivation to be
regular.

Theorem 3.8. Let d(θ,φ) be an inside (θ, φ)-derivation of a BCI-algebra X.
If there exists a ∈ X such that d(θ,φ)(x) ∗ θ(a) = 0 for all x ∈ X, then d(θ,φ) is
regular.
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Proof. Assume that there exists a ∈ X such that d(θ,φ)(x) ∗ θ(a) = 0 for all
x ∈ X. Then

0 = d(θ,φ)(x ∗ a) ∗ a =
((

d(θ,φ)(x) ∗ θ(a)
)

∧
(

φ(x) ∗ d(θ,φ)(a)
))

∗ a

=
(

0 ∧
(

φ(x) ∗ d(θ,φ)(a)
))

∗ a = 0 ∗ a,

and so d(θ,φ)(0) = d(θ,φ)(0 ∗ a) =
(

d(θ,φ)(0) ∗ θ(a)
)

∧
(

φ(0) ∗ d(θ,φ)(a)
)

= 0.
Hence d(θ,φ) is regular. �

Theorem 3.9. If X is a BCK-algebra, then every inside (or outside) (θ, φ)-
derivation of X is regular.

Proof. Let d(θ,φ) be an inside (θ, φ)-derivation of a BCK-algebra X. Then

d(θ,φ)(0) = d(θ,φ)(0 ∗ x)

=
(

d(θ,φ)(0) ∗ θ(x)
)

∧
(

φ(0) ∗ d(θ,φ)(x)
)

=
(

d(θ,φ)(0) ∗ θ(x)
)

∧ 0 = 0.

If d(θ,φ) is an outside (θ, φ)-derivation of a BCK-algebra X , then

d(θ,φ)(0) = d(θ,φ)(0 ∗ x)

=
(

θ(0) ∗ d(θ,φ)(x)
)

∧
(

d(θ,φ)(0) ∗ φ(x)
)

= 0 ∧
(

d(θ,φ)(0) ∗ φ(x)
)

= 0.

Hence d(θ,φ) is regular. �

To prove our next results, we define the following notions:

Definition 3.10. For an inside (or outside) (θ, φ)-derivation d(θ,φ) of a
BCK/BCI-algebra X, we say that an ideal A of X is a θ-ideal (resp. φ-ideal)
if θ(A) ⊆ A (resp. φ(A) ⊆ A).

Definition 3.11. For an inside (or outside) (θ, φ)-derivation d(θ,φ) of a
BCK/BCI-algebra X, we say that an ideal A of X is d(θ,φ)-invariant if
d(θ,φ)(A) ⊆ A.

Example 3.12. Let d(θ,φ) be an outside (θ, φ)-derivation of X which is de-
scribed in Example 3.2. We know that A := {0, a} is both a θ-ideal and a
φ-ideal of X. But A := {0, a} is an ideal of X which is not d(θ,φ)-invariant.

Theorem 3.13. Let d(θ,φ) be a regular outside (θ, φ)-derivation of a BCI-
algebra X. Then every θ-ideal of X is d(θ,φ)-invariant.

Proof. Let A be a θ-ideal of X. Since d(θ,φ) is regular, it follows from Lemma
3.3 that d(θ,φ)(x) = θ(x) ∧ d(θ,φ)(x) ≤ θ(x) for all x ∈ X. Let y ∈ X be such
that y ∈ d(θ,φ)(A). Then y = d(θ,φ)(x) for some x ∈ A. Thus

y ∗ θ(x) = d(θ,φ)(x) ∗ θ(x) = 0 ∈ A.

Note that θ(x) ∈ θ(A) ⊆ A. Since A is an ideal of X, it follows that y ∈ A so
that d(θ,φ)(A) ⊆ A. Therefore A is d(θ,φ)-invariant. �
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If we take θ = φ = 1X in Theorem 3.13 where 1X is the identity map, then
we have the following corollary.

Corollary 3.14 ([4]). Let d be a regular (r, l)-derivation of a BCI-algebra X.
Then every ideal of X is d-invariant.

If we take θ = φ = f in Theorem 3.13, then we have the following corollary.

Corollary 3.15 ([11]). Let df be a regular (r, l)-f -derivation of a BCI-algebra
X. Then every f -ideal of X is df -invariant.

Theorem 3.16. Let d(θ,φ) be an outside (θ, φ)-derivation of a BCI-algebra X.
If every θ-ideal of X is d(θ,φ)-invariant, then d(θ,φ) is regular.

Proof. Assume that every θ-ideal of X is d(θ,φ)-invariant. Since the zero ideal
{0} is clearly θ-ideal and d(θ,φ)-invariant, we have d(θ,φ)({0}) ⊆ {0}, and so
d(θ,φ)(0) = 0. Hence d(θ,φ) is regular. �

Combining Theorems 3.13 and 3.16, we have a characterization of a regular
outside (θ, φ)-derivation.

Theorem 3.17. For an outside (θ, φ)-derivation d(θ,φ) of a BCI-algebra X,

the following are equivalent:

(1) d(θ,φ) is regular.

(2) Every θ-ideal of X is d(θ,φ)-invariant.

If we take θ = φ = 1X in Theorem 3.17 where 1X is the identity map, then
we have the following corollary.

Corollary 3.18 ([4]). Let d be an (r, l)-derivation of a BCI-algebra X. Then
d is regular if and only if every ideal of X is d-invariant.

If we take θ = φ = f in Theorem 3.17, then we have the following corollary.

Corollary 3.19 ([11]). For an (r, l)-f -derivation df of a BCI-algebra X, the
following are equivalent:

(1) df is regular.

(2) Every f -ideal of X is df -invariant.

Conclusion

In the present paper, we have considered the notions of regular inside (or out-
side) (θ, φ)-derivation, θ-ideal, φ-ideal and invariant inside (or outside) (θ, φ)-
derivation of a BCK/BCI-algebra, and investigated related properties. In our
opinion, these definitions and main results can be similarly extended to some
other algebraic systems such as subtraction algebras, B-algebras, MV-algebras,
d-algebras, Q-algebras etc. In future we can study the notion of regular (θ, φ)-
derivations on various algebraic structures which may have a lot of applications
in different branches of theoretical physics, engineering and computer science.
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It is our hope that this work would serve as a foundation for the further study
in the theory of derivations of BCK/BCI-algebras.
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