STRONG UNIQUE CONTINUATION OF THE SCHRÖDINGER OPERATOR

YONNE MI KIM

1. Introduction

It is well known that if P(x, D) is an elliptic differential operator, with real analytic coefficients, and P(x, D)u = 0 in an open, connected subset $\Omega \in R^n$, then u is real analytic in Ω . Hence, if there exists $x_0 \in \Omega$ such that u vanishes of ∞ order at x_0 , u must be identically 0. If a differential operator P(x, D) has the above property, we say that P(x, D) has the strong unique continuation property (s.u.c.p.). If, on the other hand, P(x, D)u = 0 in Ω , and u = 0 in Ω' , an open subset of Ω , implies that u = 0 in Ω we say that P(x, D) has the unique continuation property (u.c.p.). Finally, if P(x, D)u = 0 in Ω , and supp $u \subset K \subset \Omega$ implies that u = 0 in Ω , we sat that P(x, D) has the weak unique continuation property (w.u.c.p.).

The first results in this direction are to be found in the work of T.Carleman[2] in 1939. He was able to show that $P(x,D) = \Delta + V(x)$ in R^2 has the (s.u.c.p.) whenever the function V(x) is in $L^{\infty}_{loc}(R^2)$. In order to prove this result he introduced a method, the so called Carleman estimates, which has permeated almost all subsequent work in this subject. In this context, a Carleman estimate is, roughly speaking, an inequality of the form:

$$||e^{t\phi}f||_{L^2(U)} \le C||e^{t\phi}\Delta f||_{L^2(U)}$$

for all $f \in C_0^{\infty}(U)$, U an open subset of \mathbb{R}^2 , and a suitable function ϕ , where the constant C is independent of t, for a sequence of real values of t tending to ∞ . There are many papers on which this work is based. For a reference, see the survey by C.E.Kenig[6].

Received September 9, 1992.

THEOREM. Let U be a non-empty connected open subset of \mathbb{R}^n , and u be a solution of the differential equation

$$(\Delta + \nabla W)u = 0 \tag{1}$$

Here Δ is the Laplace operator, $W \in L^r_{loc}(\mathbb{R}^n)$ for some suitable r. If u vanishes at an open subset of u, then u = 0 identically on U.

This kind of unique continuation theorem for the Schrödinger operator $\Delta + V$ when $V \in L^{n/2}(\mathbb{R}^n)$ has been studied by many mathematicians.([2][3]][4][5])

In [4] D. Jerison showed (s.u.c.p.) holds for the operator $\Delta + V$, where $V \in L_{loc}^{n/2}(\mathbb{R}^n)$. He also suggested unique continuation hold for operators of the form $\Delta + V$, where $V = \sum \partial V_j / \partial x_j$, and $V_j \in L_{loc}^r(\mathbb{R}^n)$, r = (3n-2)/2.

This last hypothesis on the potential is closer in spirit to the condition on potentials advanced by B.Simon[8].

In [7], unique continuation of the differential equation

$$(\Delta + \sum a_j \partial/\partial x_j + b)u = 0$$
 (2)

with $a_j \in L^r_{loc}(\mathbb{R}^n), \ b \in L^r_{loc}(\mathbb{R}^n)$ was shown.

To prove unique continuation for (1), we need the following Carleman inequality proved by the author [4].

$$||e^{ts(y)}\nabla f||_{L^{q_1}(U\setminus\{0\})} \le C||e^{ts(y)}\Delta f||_{L^p(U\setminus\{0\})}.$$
 (3)

where $1/p - 1/q_1 = 1/r$ for C independent of t as t goes to infinity, $f \in C_0^{\infty}(U \setminus \{0\})$, and s(y) is a suitable weight function which is radial and radially decreasing. The key feature that distinguishes this inequality from ordinary Sobolev inequalities is that the constant C is independent of the parameter t.

Since these are Sobolev inequalities, exponent s = n/2 is the natural one we can expect. But we need some restriction for r. In our case the largest value we can expect for r is r = (3n - 2)/2, and we will choose p = (6n - 4)/(3n - 2). Then $q_1 = 2$, $q_2 = (6n - 4)/(3n - 6)$.

Furthermore, we will use the weight function s(y) defined implicitly by $y = -s(y) + e^{-\epsilon s(y)}$ when $y = \log|x| < 0$. Roughly speaking, $e^{ts(y)} \sim |x|^{-t}$. The idea is from Alinhac - Baouendi [1] and has been used by Hörmande[3].

Notations

1.The Diracoperator is a first-order constant coefficient operator on R^n of the form $D = \sum_{j=1}^n \alpha_j \partial/\partial x_j$, where $\alpha_1, ... \alpha_n$ are skew hermitian matrices satisfying the Clifford relations : $\alpha_j^* = -\alpha_j$ and $\alpha_j \alpha_k + \alpha_k \alpha_j = -2\delta_{jk}$; j, k = 1, ..., n. Also $D^2 = -\Delta$.

2.Polar coordinates

Let S denote the unit sphere in R^n . For $y \in R$, and $w \in S$, $x = e^y w$ gives polar coordinates on R^n , i.e., $y = \log |x|$ and w = x/|x|. The operator

$$L = \sum_{j \le k} \alpha_j \alpha_k (x_j \partial / \partial x_k - x_k \partial / \partial x_j)$$

acts only in the w-variables– $[L,\partial/\partial y]=0$. We will view L as an operator on the sphere S. Let

$$\hat{\alpha} = \sum_{j=1}^{n} \alpha_j x_j / |x|, \quad then$$

$$\hat{\alpha}D = \epsilon^{-y}(\partial/\partial y - L);$$

and since $\hat{\alpha}^2 = -1$,

$$e^{y}D = \hat{\alpha}(\partial/\partial y - L) \tag{5}$$

Note that $\hat{\alpha}$ is unitary and $L^* = L$. If we recall that

$$\Delta = e^{-2y} (\partial^2/\partial y^2 + (n-2)\partial/\partial y + \Delta_S), \tag{6}$$

where Δ_S denotes the Laplace-Beltrami operator of the sphere. It follows from $D^* = D$, $D^2 = -\Delta$ that

$$L(L+n-2) = -\Delta_S \tag{7}$$

In general if $\psi \in C^{\infty}(R)$, then (6) implies that in polar coordinates $x = e^y w$,

$$e^{ts(y)}e^{y}De^{-ts(y)}h = \hat{\alpha}A_{t}h \tag{8}$$

where $A_t = \partial/\partial y - (ts(y) + L)$.

Now we will prove the theorem.

Proof. Choose a small subset $A \subset U$ which will be decided later. From (3) and (4) we have

$$||e^{ts(y)}\nabla u||_{L^{2}(A)} + ||e^{ts(y)}u||_{L^{q_{2}}(A)}$$

$$\leq C||e^{ts(y)}\Delta u||_{L^p(R^n\backslash A)} + C||e^{ts(y)}\Delta u||_{L^p(A)}$$

On the other hand, from(1), the right hand side is bounded by

$$C||e^{ts(y)}\Delta u||_{L^p(\mathbb{R}^n\setminus A)} + C||e^{ts(y)}(\nabla W)u||_{L^p(A)}$$

Integrating by parts, we find the second part of the above is bounded by

$$C||e^{ts(y)}W(\nabla u)||_{L^{p}(A)} + C||(\nabla e^{ts(y)})Wu||_{L^{p}(A)}$$

Hölder's inequality tells us the above is bounded by

$$C||e^{ts(y)}(\nabla u)||_{L^{2}(A)}||W||_{L^{r}(A)}+C||ts'(y)e^{ts(y)}u||_{L^{2}(A)}||W||_{L^{r}(A)}$$

If we sum all the terms we finally obtain

$$||e^{ts(y)}\nabla u||_{L^2(A)} + ||e^{ts(y)}u||_{L^{q_2}(A)}$$

Strong unique continuation of the schrödinger operator

$$\leq C||e^{ts(y)}\Delta u||_{L^{p}(R^{n}\backslash A)} + C||e^{ts(y)}(\nabla u)||_{L^{2}(A)}||W||_{L^{r}(A)} + C||ts'(y)e^{ts(y)}u||_{L^{2}(A)}||W||_{L^{r}(A)}$$

The idea is to make cancellations of the last two terms on the right against the left hand side. If we choose A small as possible as $||W||_{L^r(A)}$ $\ll 1/4$, and use the following $L^2 \to L^2$ estimate

$$t||e^{ts(y)}u||_{L^{2}(A)} \le C||e^{ts(y)}\nabla v||_{L^{2}(A)}$$
(10)

After cancellations, we obtain the following:

$$||e^{ts(y)}\nabla u||_{L^{2}(A)} + ||e^{ts(y)}u||_{L^{q_{2}}(A)}$$

$$\leq C||e^{ts(y)}\Delta u||_{L^{p}(R^{n}\backslash A)}$$

Since s(y) is radial and decreasing, choose a value $a \in \partial A$. Then

$$||e^{ta}\nabla u||_{L^{2}(A)} + ||e^{ta}u||_{L^{q_{2}}(A)} \leq ||e^{ts(y)}\nabla u||_{L^{2}(A)} + ||e^{ts(y)}u||_{L^{q_{2}}(A)}$$

$$\leq C||e^{ta}\Delta u||_{L^{p}(R^{n}\setminus A)}$$

$$< C'$$

Letting t to infinity, we are forced to u = 0 identically in A.

References

- S. Alinhac-M. S. Baouendi, Uniqueness for the characteristic Cauchy problem and strong unique continuation for high order P. D. E., Amer. J. Math. 102 (1980).
- T.Carleman, Sur un problèm d'unicitépour les systè mes d'équations aux derivées partielles à deux variables indépendantes, Ark. Mat 26B (1939), 1-9.
- L.Hörmander, Uniqueness theorems for second order elliptic partial differential equations, Comm. Partial Differential Equations 8(1) (1983), 21-63.
- 4. D.Jerison, Carleman Inequalities for the Dirac and Laplace Operators and Unique Continuation, Advances in Math. 62(2) (1986)
- D. Jerison and C. E. Kenig, Unique continuation and absence of positive eigenvalues for Schrödinger operators, Ann. of Math. 121 (1985).
- C. E. Kenig, Uniform Sobolev inequalities for second order differential operators and unique continuation theorem, International Congress of Mathematicians (1986).

Yonne Mi Kim

- 7. Y-M. Kim, Carleman inequalities and strong unique continuation, Thesis, M. I. T. Cambridge, M. A., 1989.
- B. Simon, Schrödinger semmigroups, Bull. Amer. Math. Soc. 7(3) (1982), 447
 526.

College of Engineering, Hong Ik University