• Title/Summary/Keyword: Cyclooxygenase pathways

Search Result 121, Processing Time 0.019 seconds

7α,25-Dihydroxycholesterol-Induced Oxiapoptophagic Chondrocyte Death via the Modulation of p53-Akt-mTOR Axis in Osteoarthritis Pathogenesis

  • Jeong-Yeon Seo;Tae-Hyeon Kim;Kyeong-Rok Kang;HyangI Lim;Moon-Chang Choi;Do Kyung Kim;Hong Sung Chun;Heung-Joong Kim;Sun-Kyoung Yu;Jae-Sung Kim
    • Molecules and Cells
    • /
    • v.46 no.4
    • /
    • pp.245-255
    • /
    • 2023
  • This study aimed to exploring the pathophysiological mechanism of 7α,25-dihydroxycholesterol (7α,25-DHC) in osteoarthritis (OA) pathogenesis. 7α,25-DHC accelerated the proteoglycan loss in ex vivo organ-cultured articular cartilage explant. It was mediated by the decreasing extracellular matrix major components, including aggrecan and type II collagen, and the increasing expression and activation of degenerative enzymes, including matrix metalloproteinase (MMP)-3 and -13, in chondrocytes cultured with 7α,25-DHC. Furthermore, 7α,25-DHC promoted caspase-dependent chondrocyte death via extrinsic and intrinsic pathways of apoptosis. Moreover, 7α,25-DHC upregulated the expression of inflammatory factors, including inducible nitric oxide synthase, cyclooxygenase-2, nitric oxide, and prostaglandin E2, via the production of reactive oxygen species via increase of oxidative stress in chondrocytes. In addition, 7α,25-DHC upregulated the expression of autophagy biomarkers, including beclin-1 and microtubule-associated protein 1A/1B-light chain 3 via the modulation of p53-Akt-mTOR axis in chondrocytes. The expression of CYP7B1, caspase-3, and beclin-1 was elevated in the degenerative articular cartilage of mouse knee joint with OA. Taken together, our findings suggest that 7α,25-DHC is a pathophysiological risk factor of OA pathogenesis that is mediated a chondrocyte death via oxiapoptophagy, which is a mixed mode of apoptosis, oxidative stress, and autophagy.

Heat-Treated Paraprobiotic Latilactobacillus sakei KU15041 and Latilactobacillus curvatus KU15003 Show an Antioxidant and Immunostimulatory Effect

  • Jun-Hyun Hyun;Im-Kyung Woo;Kee-Tae Kim;Young-Seo Park;Dae-Kyung Kang;Na-Kyoung Lee;Hyun-Dong Paik
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.358-366
    • /
    • 2024
  • The lactic acid bacteria, including Latilactobacillus sakei and Latilactobacillus curvatus, have been widely studied for their preventive and therapeutic effects. In this study, the underlying mechanism of action for the antioxidant and immunostimulatory effects of two strains of heat-treated paraprobiotics was examined. Heat-treated L. sakei KU15041 and L. curvatus KU15003 showed higher radical scavenging activity in both the 2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and 2,2-diphenyl-1-picryl-hydrazyl (DPPH) assays than the commercial probiotic strain LGG. In addition, treatment with these two strains exhibited immunostimulatory effects in RAW 264.7 macrophages, with L. curvatus KU15003 showing a slightly higher effect. Additionally, they promoted phagocytosis and NO production in RAW 264.7 cells without any cytotoxicity. Moreover, the expression of tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 was upregulated. These strains resulted in an increased expression of inducible nitric oxide synthase and cyclooxygenase-2. Moreover, the nuclear factor-κB and mitogen-activated protein kinase signaling pathways were stimulated by these strains. These findings suggest the potential of using L. sakei KU15041 and L. curvatus KU15003 in food or by themselves as probiotics with antioxidant and immune-enhancing properties.

Fructus Sophorae Enhances the Production of Prostaglandin E2 and Tumor Necrosis Factor-α through Activation of MAPKs and PI3K/AKT Signaling Pathways in Murine Macrophages (대식세포에서 MAPKs 및 PI3K/AKT 신호전달계 활성을 통한 괴각 추출물의 prostaglandin E2 및 tumor necrosis factor-α 생성의 촉진)

  • Kang, Young-Soon;Han, Min Ho;Lee, Moon Hee;Hong, Su Hyun;Park, Heungsik;Jung, Jae-Chul;Lee, Jeongrai;Lee, Eun-Woo;Kang, Kyung Hwa;Kim, Cheol Min;Kim, Byung-Woo;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.23 no.11
    • /
    • pp.1397-1403
    • /
    • 2013
  • Fructus Sophorae, the dried ripe fruit of Styphnolobium japonicum (L.), is an herbal ingredient used in traditional Oriental medicine. This study was carried out to investigate the effects of Fructus Sophorae extracts (FSE) on immune modulation in a murine RAW 264.7 macrophage model. As immune response parameters, the production of prostaglandin $E_2$ ($PGE_2$) and tumor necrotic $factor-{\alpha}$ ($TNF-{\alpha}$) were evaluated. Our data revealed that FSE increased the macrophage activation and the production of $PGE_2$ and $TNF-{\alpha}$, which was consistently correlated with upregulation of cyclooxygenase-2 (COX-2) and $TNF-{\alpha}$ expression at both transcriptional and translational levels. On comparative cytokine protein array, FSE significantly increased several cytokines, which was associated with phosphorylation of mitogen- activated protein kinases (MAPKs), including extracellular signal-regulated kinase (ERK), p38 MAPK and c-Jun N-terminal kinase (JNK), and Akt in RAW 264.7 cells. However, each inhibitor of these molecules attenuated the FSE-induced $PGE_2$ production. These results indicate that FSE activated macrophages through the activation of MAPKs and phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathways in RAW 264.7 macrophages. These findings suggest that FSE may provide a promising source of an immunoenhancing agent.

Involvement of TLR4-JNK/NF-κB signaling pathway in RAW264.7 cell activation of Protaetia brevitarsis seulensis larvae extracts (흰점박이꽃무지 유충 추출물의 RAW264.7 세포 활성화에서 TLR4-JNK/NF-κB 신호전달 경로의 관여)

  • Ju-Hwi Park;Jongbeom Chae;Joon Ha Lee;Dongyup Hahn;Ju-Ock Nam
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.447-454
    • /
    • 2023
  • In the environment in which humans live, there are various antigens that invade the human body and interfere with humans leading a healthy life, so the immune system recognizes the antigen then removes them through a complex mechanism. Macrophages are widely distributed immune cells involved in the innate immune system, and produce various immune modulators such as inducible nitric oxide synthase-induced nitric oxide, cyclooxygenase-2 induced prostaglandin E2 and proinflammatory cytokines such as tumor necrosis factor-alpha. On the other hand, Protaetia brevitarsis seulensis larvae are a type of edible insect that have emerged as an alternative to the future food supply problem. The immuno-modulatory effect through the activation of murine macrophage RAW264.7 cell via mitogen-activated protein kinases (MAPKs)/nuclear factor-kappa B (NF-κB) signaling pathways has been reported. Based on this report, in this study, we confirmed how the expression of immune modulators induced by Protaetia brevitarsis seulensis larvae extracts in RAW264.7 cells was changed by treatment with pharmacological inhibitors of toll-like receptor 4 (TLR4), MAPKs and NF-κB signaling pathways. As a result, reduction of immune modulators was confirmed in the c-Jun N-terminal kinase (JNK) inhibitor treatment group and NF-κB inhibitor treatment group among the Protaetia brevitarsis seulensis larvae-treated RAW264.7 cell. Furthermore, in the TLR4 inhibitor-treated group, decreases in phosphorylation of JNK and NF-κB factors were confirmed in Protaetia brevitarsis seulensis larvae-treated RAW264.7 cell, as well as decreases in immune modulators. This results suggest that Protaetia brevitarsis seulensis larvae activates RAW264.7 cells by the engagement of TLR4-JNK/NF-κB signaling pathway.

Anti-inflammatory Activities of an Ethanol Extract of Sargassum macrocarpum in Lipopolysaccharide (LPS)-stimulated RAW 264.7 Macrophages (Lipopolysaccaride로 유도된 Raw 264.7 세포에서 큰열매모자반 에탄올 추출물의 항염증 활성)

  • Cheon, Ji Min;Kim, Hyang Suk;Choi, Eun Ok;Kwon, Da Hye;Choi, Yung Hyun;Kim, Byung Woo;Hwang, Hye Jin
    • Journal of Life Science
    • /
    • v.27 no.12
    • /
    • pp.1437-1444
    • /
    • 2017
  • Sargassum macrocarpum is a widely distributed marine brown algae found in the North Pacific. The objective of this study was to evaluate the anti-inflammatory activity of an ethanol extract of S. macrocarpum (EESM). First, we investigated the anti-inflammatory activities of EESM in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. EESM treatment suppressed nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) production and inhibited the expressions of the inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the mRNA and protein levels. In addition, the expression of pro-inflammatory cytokines, such as tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) and interleukin-1 beta ($IL-1{\beta}$), was decreased in a dose dependent manner. Investigation of the signaling pathways of nuclear factor kappa B ($NF-{\kappa}B$), phosphoinositide-3-kinase (PI3K)/Akt, and mitogen-activated protein kinases (MAPKs) revealed suppression of $NF-{\kappa}B$ translocation from the cytosol to nucleus by EESM treatment. The phosphorylation of the Akt and ERK proteins was also inhibited by EESM treatment. EESM treatment also stimulated the expression of the heme oxygenase-1 (HO-1) enzyme and its upstream transcription factor, nuclear factor-E2-related factor 2 (Nrf2). These results suggest that EESM has anti-inflammatory activity and could have potential uses in the field of nutraceuticals.

Anti-inflammatory Effect of Heat-Killed Enterococcus faecalis, EF-2001 (열처리 사균체 엔테로코커스 패칼리스 EF-2001의 항염증 효과)

  • Choi, Moon-Suk;Chang, Sang-Jin;Chae, Yuri;Lee, Myung-Hun;Kim, Wan-Joong;Iwasa, Masahiro;Han, Kwon-Il;Kim, Wan-Jae;Kim, Tack-Joong
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1361-1368
    • /
    • 2018
  • Inflammation is the most common condition in the human body. Tissue damage triggers inflammation, together with vasodilation and increased blood flow at the inflamed site, resulting in edema. Inflammatory responses are also triggered by lipopolysaccharide (LPS), a Toll-like receptor Enterococcus faecalis, a gram-positive organism, has been reported to possess immunomodulatory and preventive activities; however, its use may present risks of sepsis and other systemic infections. Heat-killed Enterococcus faecalis (EF-2001) has been reported to induce antitumor activity, but its effects on inflammation are not known. In the present study, we investigated the effect of EF-2001 on LPS-induced macrophage inflammatory responses. EF-2001 treatment reduced nitric oxide (NO) production, indicating suppression of inflammatory reactions. EF-2001 showed no cytotoxicity in macrophages. Further investigation of the anti-inflammatory mechanism of EF-2001 indicated that EF-2001 reduced the LPS-induced expression of inducible nitric oxide synthase and cyclooxygenase-2. EF-2001 also reduced f the LPS induction of several inflammatory molecules involved in the nuclear factor-${\kappa}B$ ($NF-{\kappa}B$) and mitogen-activated protein kinase pathways, including ERK, JNK, and p38 phosphorylation, in a concentration-dependent manner. Additionally, EF-2001 inhibited Akt phosphorylation and increased the expression of the inhibitory ${\kappa}B$ ($I{\kappa}B$) protein, an inhibitor of $NF-{\kappa}B$. EF-2001 also inhibited the nuclear translocation of p65. These results suggest that EF-2001 has anti-inflammatory properties and may be useful for treating inflammatory diseases.

Anti-Inflammatory Effect of Grateloupia imbricata Holmes Ethanol Extract on LPS-Induced RAW 264.7 Cells (꽃지누아리 에탄올 추출물의 LPS로 유도된 RAW 264.7 세포에 대한 항염증 효과)

  • Kim, Min-Ji;Bae, Nan-Yong;Kim, Koth-Bong-Woo-Ri;Park, Ji-Hye;Park, Sun-Hee;Choi, Jung-Su;Ahn, Dong-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.2
    • /
    • pp.181-187
    • /
    • 2016
  • Algae is a potential resource with various biological activities. In this study, the anti-inflammatory effect of Grateloupia imbricata Holmes ethanol extract (GIHEE) from red algae was investigated in LPS-induced RAW 264.7 cells. As a result, reduced secretion of pro-inflammatory cytokines [tumor necrosis factors-${\alpha}$, interleukin (IL)-$1{\beta}$, and IL-6] and nitric oxide (NO) was observed in a dose-dependent manner. Expression of nuclear factor-kappaB (NF-${\kappa}B$) as well as inducible NO synthase and cyclooxygenase-2 proteins was reduced by GIHEE, suggesting that the anti-inflammatory activity of GIHEE is related to suppression of NF-${\kappa}B$ signaling pathways. In addition, GIHEE reduced phosphorylation of mitogen-activated protein kinases. These results suggest that GIHEE can be used as a potential anti-inflammatory therapeutic.

Anti-Inflammatory Effect of Chondrus nipponicus Yendo Ethanol Extract on Lipopolysaccharide-Induced Inflammatory Responses in RAW 264.7 Cells (LPS로 유도된 RAW 264.7 세포에 대한 가락진두발 에탄올 추출물의 항염증 효과)

  • Kim, Min-Ji;Bae, Nan-Yong;Kim, Koth-Bong-Woo-Ri;Park, Ji-Hye;Park, Sun-Hee;Jang, Mi-Ran;Ahn, Dong-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.2
    • /
    • pp.194-201
    • /
    • 2016
  • The anti-inflammatory activity of ethanol extract from Chondrus nipponicus Yendo (CNYEE) was investigated by measuring production of a lipopolysaccharide-induced inflammatory response mediator. CNYEE had no cytotoxic effects on proliferation of macrophages compared to the control. CNYEE significantly inhibited (over 50%) NO production at $50{\mu}g/mL$, with inhibitory effects on expression levels of cytokines such as interleukin (IL)-6, tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), and IL-$1{\beta}$. In particular, IL-6 inhibitory activity of CNYEE was higher than 70% at $100{\mu}g/mL$. CNYEE also reduced protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and nuclear factor (NF)-${\kappa}B$ in a dose-dependent manner. CNYEE also significantly reduced phosphorylation of p38, extracellular signal-regulated kinase, and c-Jun N-terminal kinase. Therefore, these results suggest that CNYEE may have anti-inflammatory effects by modulating the NF-${\kappa}B$ and mitogen-activated protein kinases signaling pathways and may be used as an anti-inflammatory therapeutic material.

Diallyl Disulfide Prevents Cyclophosphamide-Induced Hemorrhagic Cystitis in Rats through the Inhibition of Oxidative Damage, MAPKs, and NF-κB Pathways

  • Kim, Sung Hwan;Lee, In Chul;Ko, Je Won;Moon, Changjong;Kim, Sung Ho;Shin, In Sik;Seo, Young Won;Kim, Hyoung Chin;Kim, Jong Choon
    • Biomolecules & Therapeutics
    • /
    • v.23 no.2
    • /
    • pp.180-188
    • /
    • 2015
  • This study investigated the possible effects and molecular mechanisms of diallyl disulfide (DADS) against cyclophosphamide (CP)-induced hemorrhagic cystitis (HC) in rats. Inflammation response was assessed by histopathology and serum cytokines levels. We determined the protein expressions of nuclear transcription factor kappa-B (NF-${\kappa}B$), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), oxidative stress, urinary nitrite-nitrate, malondialdehyde (MDA), and 8-hydroxy-2'-deoxyguanosine (8-OHdG). Finally, we studied the involvement of mitogen-activated protein kinases (MAPKs) signaling in the protective effects of DADS against CP-induced HC. CP treatment caused a HC which was evidenced by an increase in histopathological changes, proinflammatory cytokines levels, urinary nitrite-nitrate level, and the protein expression of NF-${\kappa}B$, COX-2, iNOS, TNF-${\alpha}$, p-c-Jun N-terminal kinase (JNK), and p-extracellular signal regulated kinase (ERK). The significant decreases in glutathione content and glutathione-S-transferase and glutathione reductase activities, and the significant increase in MDA content and urinary MDA and 8-OHdG levels indicated that CP-induced bladder injury was mediated through oxidative DNA damage. In contrast, DADS pretreatment attenuated CP-induced HC, including histopathological lesion, serum cytokines levels, oxidative damage, and urinary oxidative DNA damage. DADS also caused significantly decreased the protein expressions of NF-${\kappa}B$, COX-2, iNOS, TNF-${\alpha}$, p-JNK, and p-ERK. These results indicate that DADS prevents CP-induced HC and that the protective effects of DADS may be due to its ability to regulate proinflammatory cytokines production by inhibition of NF-${\kappa}B$ and MAPKs expressions, and its potent anti-oxidative capability through reduction of oxidative DNA damage in the bladder.

Anti-Inflammatory Activity of Oligomeric Proanthocyanidins Via Inhibition of NF-κB and MAPK in LPS-Stimulated MAC-T Cells

  • Ma, Xiao;Wang, Ruihong;Yu, Shitian;Lu, Guicong;Yu, Yongxiong;Jiang, Caode
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.10
    • /
    • pp.1458-1466
    • /
    • 2020
  • Oligomeric proanthocyanidins (OPCs), classified as condensed tannins, have significant antioxidation, anti-inflammation and anti-cancer effects. This study was performed to investigate the anti-inflammatory effects of OPCs and the mechanism underlying these effects in lipopolysaccharide (LPS)-stimulated bovine mammary epithelial cells (MAC-T). Real-time PCR and ELISA assays indicated that OPC treatment at 1, 3 and 5 ㎍/ml significantly reduced the mRNA and protein, respectively, of oxidant indicators cyclooxygenase-2 (COX-2) (p < 0.05) and inducible nitric oxide synthase (iNOS) (p < 0.01) as well as inflammation cytokines interleukin (IL)-6 (p < 0.01), IL-1β (p < 0.01) and tumor necrosis factor-α (TNF-α) (p < 0.05) in LPS-induced MAC-T cells. Moreover, OPCs downregulated LPS-induced phosphorylation of p65 and inhibitor of nuclear factor kappa B (NF-κB) (IκB) in the NF-κB signaling pathway (p < 0.01), and they inhibited p65 translocation from the cytoplasm to the nucleus as revealed by immunofluorescence test and western blot. Additionally, OPCs decreased phosphorylation of p38, extracellular signal regulated kinase and c-jun NH2-terminal kinase in the MAPK signaling pathway (p < 0.01). In conclusion, the anti-inflammatory and antioxidant activities of OPCs involve NF-κB and MAPK signaling pathways, thus inhibiting expression of pro-inflammatory factors and oxidation indicators. These findings provide novel experimental evidence for the further practical application of OPCs in prevention and treatment of bovine mastitis.