DOI QR코드

DOI QR Code

7α,25-Dihydroxycholesterol-Induced Oxiapoptophagic Chondrocyte Death via the Modulation of p53-Akt-mTOR Axis in Osteoarthritis Pathogenesis

  • Jeong-Yeon Seo (The Institute of Dental Science, School of Dentistry, Chosun University) ;
  • Tae-Hyeon Kim (The Institute of Dental Science, School of Dentistry, Chosun University) ;
  • Kyeong-Rok Kang (The Institute of Dental Science, School of Dentistry, Chosun University) ;
  • HyangI Lim (The Institute of Dental Science, School of Dentistry, Chosun University) ;
  • Moon-Chang Choi (Department of Biomedical Science, College of Natural Science and Public Health and Safety, Chosun University) ;
  • Do Kyung Kim (The Institute of Dental Science, School of Dentistry, Chosun University) ;
  • Hong Sung Chun (Department of Biomedical Science, College of Natural Science and Public Health and Safety, Chosun University) ;
  • Heung-Joong Kim (The Institute of Dental Science, School of Dentistry, Chosun University) ;
  • Sun-Kyoung Yu (The Institute of Dental Science, School of Dentistry, Chosun University) ;
  • Jae-Sung Kim (The Institute of Dental Science, School of Dentistry, Chosun University)
  • Received : 2022.09.23
  • Accepted : 2022.12.05
  • Published : 2023.04.30

Abstract

This study aimed to exploring the pathophysiological mechanism of 7α,25-dihydroxycholesterol (7α,25-DHC) in osteoarthritis (OA) pathogenesis. 7α,25-DHC accelerated the proteoglycan loss in ex vivo organ-cultured articular cartilage explant. It was mediated by the decreasing extracellular matrix major components, including aggrecan and type II collagen, and the increasing expression and activation of degenerative enzymes, including matrix metalloproteinase (MMP)-3 and -13, in chondrocytes cultured with 7α,25-DHC. Furthermore, 7α,25-DHC promoted caspase-dependent chondrocyte death via extrinsic and intrinsic pathways of apoptosis. Moreover, 7α,25-DHC upregulated the expression of inflammatory factors, including inducible nitric oxide synthase, cyclooxygenase-2, nitric oxide, and prostaglandin E2, via the production of reactive oxygen species via increase of oxidative stress in chondrocytes. In addition, 7α,25-DHC upregulated the expression of autophagy biomarkers, including beclin-1 and microtubule-associated protein 1A/1B-light chain 3 via the modulation of p53-Akt-mTOR axis in chondrocytes. The expression of CYP7B1, caspase-3, and beclin-1 was elevated in the degenerative articular cartilage of mouse knee joint with OA. Taken together, our findings suggest that 7α,25-DHC is a pathophysiological risk factor of OA pathogenesis that is mediated a chondrocyte death via oxiapoptophagy, which is a mixed mode of apoptosis, oxidative stress, and autophagy.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF2019R1F1A104537913).

References

  1. Bhutia, S.K., Praharaj, P.P., Bhol, C.S., Panigrahi, D.P., Mahapatra, K.K., Patra, S., Saha, S., Das, D.N., Mukhopadhyay, S., Sinha, N., et al. (2019). Monitoring and measuring mammalian autophagy. Methods Mol. Biol. 1854, 209-222.
  2. Caillot, M., Dakik, H., Mazurier, F., and Sola, B. (2021). Targeting reactive oxygen species metabolism to induce myeloma cell death. Cancers (Basel) 13, 2411.
  3. Centonze, G., Natalini, D., Piccolantonio, A., Salemme, V., Morellato, A., Arina, P., Riganti, C., and Defilippi, P. (2022). Cholesterol and its derivatives: multifaceted players in breast cancer progression. Front. Oncol. 12, 906670.
  4. Choi, W.S., Lee, G., Song, W.H., Koh, J.T., Yang, J., Kwak, J.S., Kim, H.E., Kim, S.K., Son, Y.O., Nam, H., et al. (2019). The CH25H-CYP7B1-RORα axis of cholesterol metabolism regulates osteoarthritis. Nature 566, 254-258. https://doi.org/10.1038/s41586-019-0920-1
  5. Chun, Y. and Kim, J. (2018). Autophagy: an essential degradation program for cellular homeostasis and life. Cells 7, 278.
  6. Farnaghi, S., Crawford, R., Xiao, Y., and Prasadam, I. (2017). Cholesterol metabolism in pathogenesis of osteoarthritis disease. Int. J. Rheum. Dis. 20, 131-140. https://doi.org/10.1111/1756-185X.13061
  7. He, Y., Li, Z., Alexander, P.G., Ocasio-Nieves, B.D., Yocum, L., Lin, H., and Tuan, R.S. (2020). Pathogenesis of osteoarthritis: risk factors, regulatory pathways in chondrocytes, and experimental models. Biology (Basel) 9, 194.
  8. Hwang, H.S. and Kim, H.A. (2015). Chondrocyte apoptosis in the pathogenesis of osteoarthritis. Int. J. Mol. Sci. 16, 26035-26054. https://doi.org/10.3390/ijms161125943
  9. Loeser, R.F. (2011). Aging and osteoarthritis. Curr. Opin. Rheumatol. 23, 492-496. https://doi.org/10.1097/BOR.0b013e3283494005
  10. Loeser, R.F., Goldring, S.R., Scanzello, C.R., and Goldring, M.B. (2012). Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 64, 1697-1707. https://doi.org/10.1002/art.34453
  11. Marchi, S., Giorgi, C., Suski, J.M., Agnoletto, C., Bononi, A., Bonora, M., De Marchi, E., Missiroli, S., Patergnani, S., Poletti, F., et al. (2012). Mitochondria-ros crosstalk in the control of cell death and aging. J. Signal Transduct. 2012, 329635.
  12. Marioli-Sapsakou, G.K. and Kourti, M. (2021). Targeting production of reactive oxygen species as an anticancer strategy. Anticancer Res. 41, 5881-5902. https://doi.org/10.21873/anticanres.15408
  13. Mehana, E.E., Khafaga, A.F., and El-Blehi, S.S. (2019). The role of matrix metalloproteinases in osteoarthritis pathogenesis: an updated review. Life Sci. 234, 116786.
  14. Menon, M.B. and Dhamija, S. (2018). Beclin 1 phosphorylation - at the center of autophagy regulation. Front. Cell Dev. Biol. 6, 137.
  15. Michallet, A.S., Mondiere, P., Taillardet, M., Leverrier, Y., Genestier, L., and Defrance, T. (2011). Compromising the unfolded protein response induces autophagy-mediated cell death in multiple myeloma cells. PLoS One 6, e25820.
  16. Mok, E.H.K. and Lee, T.K.W. (2020). The pivotal role of the dysregulation of cholesterol homeostasis in cancer: implications for therapeutic targets. Cancers (Basel) 12, 1410.
  17. Nury, T., Zarrouk, A., Vejux, A., Doria, M., Riedinger, J.M., Delage-Mourroux, R., and Lizard, G. (2014). Induction of oxiapoptophagy, a mixed mode of cell death associated with oxidative stress, apoptosis and autophagy, on 7-ketocholesterol-treated 158N murine oligodendrocytes: impairment by α-tocopherol. Biochem. Biophys. Res. Commun. 446, 714-719. https://doi.org/10.1016/j.bbrc.2013.11.081
  18. Nury, T., Zarrouk, A., Yammine, A., Mackrill, J.J., Vejux, A., and Lizard, G. (2021). Oxiapoptophagy: a type of cell death induced by some oxysterols. Br. J. Pharmacol. 178, 3115-3123. https://doi.org/10.1111/bph.15173
  19. Olivier, E., Dutot, M., Regazzetti, A., Laprevote, O., and Rat, P. (2017). 25-Hydroxycholesterol induces both P2X7-dependent pyroptosis and caspase-dependent apoptosis in human skin model: New insights into degenerative pathways. Chem. Phys. Lipids 207(Pt B), 171-178. https://doi.org/10.1016/j.chemphyslip.2017.06.001
  20. Pokharel, S.M., Shil, N.K., Gc, J.B., Colburn, Z.T., Tsai, S.Y., Segovia, J.A., Chang, T.H., Bandyopadhyay, S., Natesan, S., Jones, J.C.R., et al. (2019). Integrin activation by the lipid molecule 25-hydroxycholesterol induces a proinflammatory response. Nat. Commun. 10, 1482.
  21. Seo, Y.S., Cho, I.A., Kim, T.H., You, J.S., Oh, J.S., Lee, G.J., Kim, D.K., and Kim, J.S. (2020). Oxysterol 25-hydroxycholesterol as a metabolic pathophysiological factors of osteoarthritis induces apoptosis in primary rat chondrocytes. Korean J. Physiol. Pharmacol. 24, 249-257. https://doi.org/10.4196/kjpp.2020.24.3.249
  22. Sun, S. and Liu, C. (2015). 7α, 25-dihydroxycholesterol-mediated activation of EBI2 in immune regulation and diseases. Front. Pharmacol. 6, 60.
  23. Wojdasiewicz, P., Poniatowski, L.A., and Szukiewicz, D. (2014). The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm. 2014, 561459.