DOI QR코드

DOI QR Code

흰점박이꽃무지 유충 추출물의 RAW264.7 세포 활성화에서 TLR4-JNK/NF-κB 신호전달 경로의 관여

Involvement of TLR4-JNK/NF-κB signaling pathway in RAW264.7 cell activation of Protaetia brevitarsis seulensis larvae extracts

  • Ju-Hwi Park (Department of Food Science and Biotechnology, Kyungpook National University) ;
  • Jongbeom Chae (Department of Food Science and Biotechnology, Kyungpook National University) ;
  • Joon Ha Lee (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Dongyup Hahn (Institute of Agricultural Science and Technology, Kyungpook National University) ;
  • Ju-Ock Nam (Department of Food Science and Biotechnology, Kyungpook National University)
  • 투고 : 2023.08.03
  • 심사 : 2023.10.23
  • 발행 : 2023.12.31

초록

인간이 살아가는 환경에는 인체에 침입하여 건강한 삶을 영위하는 것을 방해하는 다양한 항원들이 존재하며, 면역 체계는 복잡한 기전을 통하여 이를 인식하고 제거한다. 대식세포는 선천 면역체계에 관연하는 면역세포로 체내 널리 분포하고 있으며, inducible nitric oxide synthase로 유도된 산화질소, cyclooxygenase-2로 유도된 prostaglandin E2 그리고 tumor necrosis factor-alpha 등의 전염증성 사이토카인 같은 다양한 면역 조절 물질을 생산한다. 흰점박이꽃무지유충은 미래 식량 수급 문제에 대한 대안으로 등장한 식용 곤충의 일종으로, 기존 mitogen activated protein kinases 및 nuclear factor-kappa B (NF-κB) 신호전달 경로를 경유하는 RAW264.7 대식세포의 활성화를 통한 면역 조절 효과가 보고되었다. 본 연구에서는 RAW264.7 세포에서 흰점박이꽃무지유충 추출물에 의해 유도된 면역 조절 물질의 발현이 toll-like receptor 4, mitogen activated protein kinases 및 nuclear factor-kappa B 신호전달 경로의 약리학적 억제제에 의해 어떻게 변화되었는지 확인하였다. 그 결과, 흰점박이꽃무지유충 처리에 의해 증가된 면역 조절 물질의 발현이 c-Jun N-terminal kinase (JNK) 억제제 및 NF-κB 억제제 처리에 의해 감소하는 것을 확인하였다. 또한, toll-like receptor 4(TLR4) 억제제 처리에 의해서는 흰점박이꽃무지유충 추출물 처리에 의해 증가된 면역 조절 물질의 발현과 JNK 및 NF-κB의 인산화 감소를 확인하였다. 우리의 이러한 연구는 흰점박이꽃무지유충이 TLR4-JNK/NF-κB 신호전달의 관여에 의해 RAW264.7 세포를 활성화하는 것을 시사한다.

In the environment in which humans live, there are various antigens that invade the human body and interfere with humans leading a healthy life, so the immune system recognizes the antigen then removes them through a complex mechanism. Macrophages are widely distributed immune cells involved in the innate immune system, and produce various immune modulators such as inducible nitric oxide synthase-induced nitric oxide, cyclooxygenase-2 induced prostaglandin E2 and proinflammatory cytokines such as tumor necrosis factor-alpha. On the other hand, Protaetia brevitarsis seulensis larvae are a type of edible insect that have emerged as an alternative to the future food supply problem. The immuno-modulatory effect through the activation of murine macrophage RAW264.7 cell via mitogen-activated protein kinases (MAPKs)/nuclear factor-kappa B (NF-κB) signaling pathways has been reported. Based on this report, in this study, we confirmed how the expression of immune modulators induced by Protaetia brevitarsis seulensis larvae extracts in RAW264.7 cells was changed by treatment with pharmacological inhibitors of toll-like receptor 4 (TLR4), MAPKs and NF-κB signaling pathways. As a result, reduction of immune modulators was confirmed in the c-Jun N-terminal kinase (JNK) inhibitor treatment group and NF-κB inhibitor treatment group among the Protaetia brevitarsis seulensis larvae-treated RAW264.7 cell. Furthermore, in the TLR4 inhibitor-treated group, decreases in phosphorylation of JNK and NF-κB factors were confirmed in Protaetia brevitarsis seulensis larvae-treated RAW264.7 cell, as well as decreases in immune modulators. This results suggest that Protaetia brevitarsis seulensis larvae activates RAW264.7 cells by the engagement of TLR4-JNK/NF-κB signaling pathway.

키워드

과제정보

본 연구는 농촌진흥청 연구사업(세부 과제 번호: PJ01594003)의 지원에 의해 이루어진 것임.

참고문헌

  1. Chaplin DD (2010) Overview of the immune response. J Allergy Clin Immunol 125: S3-S23. doi: 10.1016/j.jaci.2009.12.980 
  2. Koenderman L, Buurman W, Daha MR (2014) The innate immune response. Immunol Lett 162: 95-102. doi: 10.1016/j.imlet.2014.10.010 
  3. Beutler B (2004) Innate immunity: an overview. Mol Immunol 40: 845-859. doi: 10.1016/j.molimm.2003.10.005 
  4. Martinez FO, Sica A, Mantovani A, Locati M (2008) Macrophage activation and polarization. Front Biosci (Landmark Ed) 13: 453-461. doi: 10.2741/2692 
  5. Kashfi K, Kannikal J, Nath N (2021) Macrophage reprogramming and cancer therapeutics: role of iNOS-derived NO. Cells 10: 3194. doi: 10.3390/cells10113194 
  6. Giroux M, Descoteaux A (2000) Cyclooxygenase-2 expression in macrophages: modulation by protein kinase C-α. J Immunol 165: 3985-3991. doi: 10.4049/jimmunol.165.7.3985 
  7. Ma X (2001) TNF-α and IL-12: balancing act in macrophage functioning. Microbes Infect 3: 121-129. doi: 10.1016/S1286-4579(00)01359-9 
  8. Juhas U, Ryba-Stanislawowska M, Szargiej P, Mysliwska J (2015) Different pathways of macrophage activation and polarization. Adv Hyg Exp Med 69: 496-502. doi: 10.5604/17322693.1150133 
  9. Geum NG, Eo HJ, Kim HJ, Park GH, Son HJ, Jeong JB (2020) Immune-enhancing activity of Hydrangea macrophylla subsp. serrata leaves through TLR4/ROS-dependent activation of JNK and NF-κB in RAW264. 7 cells and immunosuppressed mice. J Funct Foods 73: 104139. doi: 10.1016/j.jff.2020.104139 
  10. Park MJ, Cho SJ (2022) Antioxidant Activities of Protaetia brevitarsis Larvae Fermented by Lactobacillus acidophilus. J Life Sci 32: 890-898. doi: 10.5352/JLS.2022.32.11.890 
  11. Kwon EY, Yoo J, Yoon YI, Hwang JS, Goo TW, Kim MA, Choi YC, Yun EY (2013) Pre-treatment of the white-spotted flower chafer (Protaetia brevitarsis) as an ingredient for novel foods. J Korean Soc Food Sci Nutr 42(3): 397-402. doi: 10.3746/jkfn.2013.42.3.397 
  12. Choi RY, Seo MC, Lee JH, Kim IW, Kim MA, Hwang JS (2021) Inhibitory Effect of Protaetiamycine 9 Derived from Protaetia brevitarsis seulensis Larvae on LPS-mediated Inflammation in RAW264.7 Cells. J Life Sci 31: 987-994. doi: 10.5352/JLS.2021.31.11.987 
  13. Yoo BG, Hong JP, Song HY, Byeon EH (2022) Immuno-Modulatory Activity of Hot Water Extracts Isolated from Protaetia brevitarsis seulensis Larvae through MAPKs and NF-κB Pathways in Macrophages. J Korean Soc Food Sci Nutr 51(2): 100-106. doi: 10.3746/jkfn.2022.51.2.100 
  14. Robinson MJ, Cobb MH (1997) Mitogen-activated protein kinase pathways. Curr. Opin. Cell Biol 9: 180-186. doi: 10.1016/S0955-0674(97)80061-0 
  15. Muniyappa H, Das KC (2008) Activation of c-Jun N-terminal kinase (JNK) by widely used specific p38 MAPK inhibitors SB202190 and SB203580: a MLK-3-MKK7-dependent mechanism. Cell Signal 20: 675-683. doi: 10.1016/j.cellsig.2007.12.003 
  16. Nathan CF, Hibbs Jr JB (1991) Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr Opin Immunol 3: 65-70. doi: 10.1016/0952-7915(91)90079-G 
  17. Bogdan C (2001) Nitric oxide and the immune response. Nature immunol 2: 907-916. doi: 10.1038/ni1001-907 
  18. Giuliano F, Warner TD (2002) Origins of prostaglandin E2: involvements of cyclooxygenase (COX)-1 and COX-2 in human and rat systems. J Pharmacol Exp Ther 303: 1001-1006. doi: 10.1124/jpet.102.041244 
  19. Kalinski P (2012) Regulation of immune responses by prostaglandin E2. J Immunol 188: 21-28. doi: 10.4049/jimmunol.1101029 
  20. Jang D-i, Lee A-H, Shin H-Y, Song H-R, Park J-H, Kang T-B, Lee S-R, Yang S-H (2021) The role of tumor necrosis factor alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics. Int J Mol Sci 22: 2719. doi: 10.3390/ijms22052719 
  21. Napetschnig J, Wu H (2013) Molecular basis of NF-κB signaling. Annu Rev Biophys 42: 443-468. doi: 10.1146/annurev-biophys-083012-130338