• Title/Summary/Keyword: Cycling Life

Search Result 178, Processing Time 0.026 seconds

Analytical framework for natural frequency shift of monopile-based wind turbines under two-way cyclic loads in sand

  • Yang Wang;Mingxing Zhu;Guoliang Dai;Jiang Xu;Jinbiao Wu
    • Geomechanics and Engineering
    • /
    • v.37 no.2
    • /
    • pp.167-178
    • /
    • 2024
  • The natural frequency shift under cyclic environmental loads is a key issue in the design of monopile-based offshore wind power turbines because of their dynamic sensitivity. Existing evidence reveals that the natural frequency shift of the turbine system in sand is related to the varying foundation stiffness, which is caused by soil deformation around the monopile under cyclic loads. Therefore, it is an urgent need to investigate the effect of soil deformation on the system frequency. In the present paper, three generalized geometric models that can describe soil deformation under two-way cyclic loads are proposed. On this basis, the cycling-induced changes in soil parameters around the monopile are quantified. A theoretical approach considering three-spring foundation stiffness is employed to calculate the natural frequency during cycling. Further, a parametric study is conducted to describe and evaluate the frequency shift characteristics of the system under different conditions of sand relative density, pile slenderness ratio and pile-soil relative stiffness. The results indicate that the frequency shift trends are mainly affected by the pile-soil relative stiffness. Following the relevant conclusions, a design optimization is proposed to avoid resonance of the monopile-based wind turbines during their service life.

A Study on the Electrochemical Properties for Effect of Additive of the Lithium Metal Anode (리튬 금속 음극의 첨가제 효과에 따른 전기 화학적 특성에 관한 연구)

  • Cho, S.M.;Lee, S.W.;Cho, B.W.;Ju, J.B.;Sohn, T.W.
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.3
    • /
    • pp.159-163
    • /
    • 2002
  • The use of lithium metal anode at lithium metal secondary battery can provide the very high energy density. Nevertheless, there are some problems that are short cycle life, lack of safety and poor thermal stability. Cycle life and cycling efficiency decline due to passivating films, dendritic lithium and increasing surface film by the reaction of lithium metal and electrolyte. This work investigated the additive effect of benzene, toluene, tetram-ethylethylenediamine, into the electrolyte. The cycling efficiency and cyclability are improved. The reason is confirmed by decreasing film resistance and increasing polarization resistance at AC impedance analysis. Electrolyte additive has a relatively less reactivity than electrolytes lithium and is adsorbed on lithium leading to suppression of the reaction between the electrolyte and lithium as well as an improvement in the lithium deposition mophology.

Generation of Reactive Oxygen Species and Subsequent DNA Fragmentation in Bovine Cultured Somatic Cells

  • Hwang, In-Sun;Kim, Ho-Jeong;Park, Chun-Keun;Yang, Boo-Keun;Cheong, Hee-Tae
    • Reproductive and Developmental Biology
    • /
    • v.35 no.4
    • /
    • pp.485-489
    • /
    • 2011
  • The present study was conducted to examine the reactive oxygen species (ROS) generation levels and subsequent DNA damage in the bovine cultured somatic cells. Bovine ear skin cells were classified by serum starvation, confluence and cycling cells. Cells were stained in 10 ${\mu}M$ dichlorohydrofluorescein diacetate ($H_2DCFDA$) or 10 ${\mu}M$ hydroxyphenyl fluorescein (HPF) dye to measure the $H_2O_2$ or $^{\cdot}OH$ radical levels. The samples were examined with a fluorescent microscope, and fluorescence intensity was analyzed in each cell. $H_2O_2$ and $^{\cdot}OH$ radical levels of cultured somatic cells were high in confluence group ($7.1{\pm}0.7$ and $8.4{\pm}0.4$ pixels/cell, respectively) and significantly low in serum starvation group ($4.9{\pm}0.4$ and $7.0{\pm}0.4$ pixels/cell, respectively, p<0.05). Comet tail lengths of serum starvation ($148.3{\pm}5.7$ ${\mu}M$) and confluence ($151.1{\pm}5.0$ ${\mu}M$) groups were found to be significantly (p<0.05) increased in comparison to that of cycling group ($137.1{\pm}7.5$ ${\mu}M$). These results suggest that the culture type of donor cells can affect the ROS generation, which leads the DNA fragmentation of the cells.

Biomass-Derived Three-Dimensionally Connected Hierarchical Porous Carbon Framework for Long-Life Lithium-Sulfur Batteries

  • Liu, Ying;Lee, Dong Jun;Lee, Younki;Raghavan, Prasanth;Yang, Rong;Ramawati, Fitria;Ahn, Jou-Hyeon
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.97-102
    • /
    • 2022
  • Lithium sulfur (Li-S) batteries have attracted considerable attention as a promising candidate for next-generation power sources due to their high theoretical energy density, low cost, and eco-friendliness. However, the poor electrical conductivity of sulfur and its insoluble discharging products (Li2S2/Li2S), large volume changes, severe self-discharge, and dissolution of lithium polysulfide intermediates result in rapid capacity fading, low Coulombic efficiency, and safety risks, hindering Li-S battery commercial development. In this study, a three-dimensionally (3D) connected hierarchical porous carbon framework (HPCF) derived from waste sunflower seed shells was synthesized as a sulfur host for Li-S batteries via a chemical activation method. The natural 3D connected structure of the HPCF, originating from the raw material, can effectively enhance the conductivity and accessibility of the electrolyte, accelerating the Li+/electron transfer. Additionally, the generated micropores of the HPCF, originated from the chemical activation process, can prevent polysulfide dissolution due to the limited space, thereby improving the electrochemical performance and cycling stability. The HPCF/S cell shows a superior capacity retention of 540 mA h g-1 after 70 cycles at 0.1 C, and an excellent cycling stability at 2 C for 700 cycles. This study provides a potential biomass-derived material for low-cost long-life Li-S batteries.

The Thermal Fatigue Analysis and Life Evaluation of Solder Joint for Flip Chip Package using Darveaux Model (Darveaux 모델에 의한 플립칩 패키지 솔더 접합부의 열피로 해석 및 수명 평가)

  • Shin Young-Eui;Kim Yeon-Sung;Kim Jong-Min;Choi Myun-Gi
    • Journal of Welding and Joining
    • /
    • v.22 no.6
    • /
    • pp.36-42
    • /
    • 2004
  • Experimental and numerical approaches on the thermal fatigue for the solder joint of flip chip package are discussed. However, it is one of the most difficult problems to choose the proper fatigue model. It was found that viscoplstic FE model with Darveaux method was very desirable and useful to predict the thermal fatigue life of solder joint for flip chip package under $208{\~}423K$ thermal cycling condition such as steep slope of temperature(JEDEC standard condition C). Thermal fatigue life was 1075 cycles as a result of viscoplatic model. It was a good agreement compared to the experimental. And also, it was found from the experimental that probability of the thermal fatigue life was $60{\%}$ at 1500 cycles.

Investigation on Intermittent Life Testing Program for IGBT

  • Cheng, Yu;Fu, Guicui;Jiang, Maogong;Xue, Peng
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.811-820
    • /
    • 2017
  • The reliability issue of IGBT is a concern for researchers given the critical role the device plays in the safety of operations of the converter system. The reliability of power devices can be estimated from the intermittent life test, which aims to simulate typical applications in power electronics in an accelerated manner to obtain lifetime data. However, the test is time-consuming, as testing conditions are not well considered and only rough provisions have been made in the current standards. Acceleration of the test by changing critical test conditions is controversial due to the activation of unexpected failure mechanisms. Therefore, full investigations were conducted on critical test conditions of intermittent life test. A design optimization process for IGBT intermittent life testing program was developed to save on test times without imposing additional failure mechanisms. The applicability of the process has been supported by a number of tests and failure analysis of the test results. The process proposed in this paper can guide the test process for other power semiconductors.

Life Evaluation of Long-time Used 1Cr-0.5Mo Main Steam Pipe (장기사용된 1Cr-0.5Mo 주증기관의 수명평가)

  • 백수곤;홍성인
    • Journal of Welding and Joining
    • /
    • v.16 no.1
    • /
    • pp.70-76
    • /
    • 1998
  • Most fossil power plants and many critical components will be approaching the end of their nominal design life. At the same time, utilities are finding it economically attractive to extend the use of these plants for several more years, Especially Main steam pipe that operated under high temperature and pressure, often under the more severe operating conditions associated with cycling duty, is most important pipe system and critical component in fossil power plant. To extend the viability of older pipe system and to improve the operation and maintenance reliability, some technologies of precise diagnosis and life management have evolved out of the necessity. The purpose of this study is to descrive the related technologies and show the example of one power plants. The purpose of this study is to descrive the related technologies and show the example of one power plants. The stress analysis was done using ANSYS FEM Code. The branch area from main steam to turbine was the high stressed zone. To evaluate the degradation of the pipe material, replica, visual check, magnetic test, hardness test were done at the welding spot. The degradation level of welding point was E/F, so the remaining life of the welded area was about 0-25%.

  • PDF

The Effect of LhGH on Hair Regeneration in C57BL/6CrN Mouse (LhGH가 마우스(C57BL/6CrN)의 모발 재성장에 미치는 영향)

  • Kim, Yong-Ju;Kim, Tae-Keun;Min, Byoung-Hoon;Kim, Soo-Jin
    • Applied Microscopy
    • /
    • v.41 no.1
    • /
    • pp.47-53
    • /
    • 2011
  • Hair is an appendage of skin which protects the body from outer physical and chemical stimuli. Hair is generated from the hair follicle lying on a sunken basal layer of epidermis. Hair cycling, which regenerates hair follicles throughout the life time of the organism. Numerous kinds of factors which exist at the hair follicle have been reported to regulate hair cycling, Human growth hormone secreted from pituitary gland, initially demonstrated to accelerate organ's growth, has been reported to play a role in the biology of organ size determination. We investigated the effect of 6-histidines residues tagged at amino-terminus of human growth hormone using light and electronmicroscopic methods. Human growth hormone encapsulated in nano-liposome (LhGH) was used to find how LhGH affects hair follicle cycling of mouse (C57BL6/CrN). Distilled water as a negative control, 3% Minoxidil as a positive control, and LhGH were applied to mouse for weeks. LhGH increased the number of exposed hairs per given areas ($1mm^2$). This result was also confirmed using a different breed of mice which show natural hair loss in an old age (about 17 months after birth). When LhGH was applied for 3 weeks after natural hair loss, natural hair loss on these mice was prevented, However, the control group mice on which LhGH was not applied showed further hair loss. This result indicates that LhGH may stimulate hair cycling of mouse. In clusion, it is cleat that the LhGH increased the number of hair on mice and help the depilated skin to grow new hair follicles again.

Effects of a Brain-Based Evolutionary Approach Using Rapid-cycling Brassica rapa on Elementary School Students' Interests in Life Cycle of Plants ('식물의 한살이' 단원에서 속성배추를 활용한 뇌기반 진화적 접근법이 초등학생의 흥미에 미치는 영향)

  • Kim, So-Young;Lim, Chae-Seong;Kim, Sung-Ha;Hong, Juneuy
    • Journal of Korean Elementary Science Education
    • /
    • v.35 no.3
    • /
    • pp.336-347
    • /
    • 2016
  • The purpose of this study is to analyze the effects of elementary science instruction applying a Brain-Based Evolutionary (ABC-DEF) approach using Rapid-cycling Brassica rapa (RcBr) on the interests of elementary school students. For this study, two elementary school classes in Seoul and one elementary school class in Gyeonggi-do were selected. Comparison group received instruction using textbook and teacher's guidebook. A class taught using only brain-based evolutionary approach is experimental group A, and a class taught through brain-based evolutionary approach using RcBr is experimental group B. In order to analyze the quantitative differences about the interests of students, three kinds of test were administered to the students: 'Applied Unit-Related Interests', 'Follow-up Interests' and 'Interests in the observation material'. To get more information, qualitative data such as portfolios and interviews were analyzed. The major findings are as follows. First, for the test of applied unit-related interests, a statistically significant difference was found between comparison group and experimental group A, and between comparison group and experimental group B. As the results of interviews, the students have shown that the intensified exploration activities on plant in Brain-Based Evolutionary approach applied to experimental groups A and B had a positive effect. Second, for test of follow-up interests, we classified the students' follow-up interests into three types: extended-developed-deepened (EDD) type, simply expanded-maintained (SEM) type, and stopped or decreased (SD) type. Both experimental group A and experimental group B showed the highest percentage of EDD. Also, observation journal applying the evolutionary process (DEF) showed a positive effect on the students' interest. Comparison group showed the highest percentage of SEM. Third, for test of applied interests in the observation material, a statistically significant difference was found between comparison group and experimental group A, and comparison group and experimental group B. Experimental group B using RcBr showed the highest average score, while experimental group A showed a higher score than comparison group. Based on these findings, educational implications of Brain-Based Evolutionary approach and using RcBr are discussed.

A Study on Improving Fatigue Life for Composite Cylinder with Seamless Integrated Liner (이음매 없는 일체형 라이너를 갖는 복합재 압력용기의 피로수명 향상에 대한 연구)

  • Kim, Hyo-Joon
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.6
    • /
    • pp.46-51
    • /
    • 2013
  • Composite cylinder is used by hydrogen fuel cell vehicles and natural gas vehicles because of high specific modulus, specific strength and fatigue resistance. composite cylinder has a seamless integrated liner and it is fully overwrapped with structural fibers of high strength carbon fibers in an epoxy matrix. In this study, filament winding pattern and autofrettage pressure design technique are presented considering structural weakness of knuckle and compressive residual stress. Presented methodology is verified by pressure cycling test of composite cylinders.