DOI QR코드

DOI QR Code

Analytical framework for natural frequency shift of monopile-based wind turbines under two-way cyclic loads in sand

  • Yang Wang (School of Civil and Architectural Engineering, Shandong University of Technology) ;
  • Mingxing Zhu (School of Civil Engineering and Architecture, Jiangsu University of Science and Technology) ;
  • Guoliang Dai (School of Civil Engineering, Southeast University) ;
  • Jiang Xu (Institute of Geotechnical Engineering, Yangzhou University) ;
  • Jinbiao Wu (School of Resource and Safety Engineering, Central South University)
  • Received : 2023.09.12
  • Accepted : 2024.04.02
  • Published : 2024.04.25

Abstract

The natural frequency shift under cyclic environmental loads is a key issue in the design of monopile-based offshore wind power turbines because of their dynamic sensitivity. Existing evidence reveals that the natural frequency shift of the turbine system in sand is related to the varying foundation stiffness, which is caused by soil deformation around the monopile under cyclic loads. Therefore, it is an urgent need to investigate the effect of soil deformation on the system frequency. In the present paper, three generalized geometric models that can describe soil deformation under two-way cyclic loads are proposed. On this basis, the cycling-induced changes in soil parameters around the monopile are quantified. A theoretical approach considering three-spring foundation stiffness is employed to calculate the natural frequency during cycling. Further, a parametric study is conducted to describe and evaluate the frequency shift characteristics of the system under different conditions of sand relative density, pile slenderness ratio and pile-soil relative stiffness. The results indicate that the frequency shift trends are mainly affected by the pile-soil relative stiffness. Following the relevant conclusions, a design optimization is proposed to avoid resonance of the monopile-based wind turbines during their service life.

Keywords

Acknowledgement

The research described in this paper was financially supported by the National Natural Science Foundation of China (52078128) and Natural Science Foundation of Shandong Province (ZR2023QE172)

References

  1. Abadie, C.N., Byrne, B.W. and Houlsby, G.T. (2019), "Rigid pile response to cyclic lateral loading: laboratory tests", Geotechnique, 69(10), 1-41. https://doi.org/10.1680/jgeot.16.P.325.
  2. Adhikari, S. and Bhattacharya, S. (2011), "Vibrations of wind-turbines considering soil-structure interaction", Wind Struct., 14(2), 85-112. https://doi.org/10.12989/was.2011.14.2.085.
  3. API. (2020), Geotechnical and foundation design considerations, API recommended practice 2GEO, 1st edn. Washington, DC, USA: API.
  4. Alamouti, S.D., Bahaari, M.R. and Moradi, M. (2017), "Natural frequency of offshore wind turbines on rigid and flexible monopiles in cohesionless soils with linear stiffness distribution", Appl. Ocean Res., 68, 91-102. https://doi.org/10.1016/j.apor.2017.07.009.
  5. Amar, Bouzid, D., Bhattacharya, S. and Otsmane, L. (2018), "Assessment of natural frequency of installed offshore wind turbines using nonlinear finite element model considering soil-monopile interaction", J. Rock Mech. Geotech. Eng., 10(2), 141-154. https://doi.org/ CNKI:SUN:JRMG.0.2018-02-012.
  6. Andersen, L.V., Vahdatirad, M.J., Sichani, M.T. and Serensen, J. (2012), "Natural frequencies of wind turbines on monopile foundations in clayey soils-a probabilistic approach". Comput. Geotech., 43(6), 1-11. https://doi.org/10.1016/j.compgeo.2012.01.010.
  7. Arany, L., Bhattacharya, S., Macdonald, J. and Hogan, S.J. (2016), "Closed form solution of eigen frequency of monopile supported offshore wind turbines in deeper waters incorporating stiffness of substructure and SSI", Soil Dyn. Earthq. Eng., 83, 18-32. https://doi.org/10.1016 /j.soildyn.2015.12.011. https://doi.org/10.1016/j.soildyn.2015.12.011
  8. Arany, L., Bhattacharya, S., Adhikari, S., Hogan, S.J. and Macdonald, J. (2015), "An analytical model to predict the natural frequency of offshore wind turbines on three-spring flexible foundations using two different beam models". Soil Dyn. Earthq. Eng., 74, 40-45. https://doi.org/10.1016/j.soildyn.2015.03.007.
  9. Barari, A., Zeng, X., Rezania, M. and Ibsen, L.B. (2021), "Three-dimensional modeling of monopiles in sand subjected to lateral loading under static and cyclic conditions", Geomech. Eng., 26(2), 175-190. https://doi.org/10.12989/gae.2021.26.2.175.
  10. Bhattacharya, S., Cox, J.A., Lombardi, D. and Wood, D.M. (2012), "Dynamics of offshore wind turbines supported on two foundations". ICE- Geotech. Eng., 166(2), 159-169. https://doi.org/ 10.1680/geng.11.00015.
  11. Burd, H.J., Taborda, D.M.G. and Zdravkovic, L. (2019), "PISA design model for monopiles for offshore wind turbines: application to a marine sand", Geotechnique, 70(11). https://doi.org/ 10.1680/jgeot.18.p.277.
  12. Carswell, W., Arwade, S.R., DeGroot, D.J. and Myers, A.T. (2016), "Natural frequency degradation and permanent accumulated rotation for offshore wind turbine monopiles in clay", Renew Energ., 97(11), 319-330. https://doi.org/10.1016/j.renene.2016.05.080.
  13. Chang, C.S. and Deng, Y. (2022), "Energy equation and stress-dilatancy relationship for sand". Acta Geotech., 17, 2675-2696. https://doi.org/10.1007/s11440-021-01389-1.
  14. Chong, S.H. and Santamarina, J.C. (2016), "Sands subjected to vertical repetitive loading under zero lateral strain: Accumulation models, terminal densities, and settlement", Can. Geotech. J., 53(12). https://doi.org/10.1139/cgj-2016-0032.
  15. Chong, S.H., Shin, H.S. and Cho, G.C. (2019), "Numerical analysis of offshore monopile during repetitive lateral loading", Geomech. Eng., 19(1), 79-91. https://doi.org/10.12989/gae.2019.19.1.079.
  16. Cuellar, P. (2011), "Pile foundations for offshore wind turbines: numerical and experimental investigations on the behaviour under short-term and long-term cyclic loads", PhD thesis, Berlin, Germany.
  17. Cui, L. and Bhattacharya, S. (2016), "Soil-monopile interactions for offshore wind turbines", Eng. Comput. Mech., 169(4), 1-12. https://doi.org/10.1680/jencm.16.00006.
  18. DNVGL. (2021), DNVGL-ST-0126-support structures for wind turbines. Det Norske Veritas, Greater Oslo.
  19. Gao, S.J., Feng, G.N. and Liu, F.S. (2024), "Investigation to the nonlinearity evolution of offshore wind turbines using field data: Application to a 4 MW monopile offshore wind turbine", Appl. Ocean Res., 145, 103918. https://doi.org/10.1016/j.apor.2024.103918.
  20. Gao, Z.W., Yan, L.Y. and Whyte, S. (2023), "B-SDM: a bounding surface stiffness degradation method for modelling the long-term ratcheting response of offshore wind turbine foundations", Comput. Geotech., 154, 105157. https://doi.org/10.1016/j.compgeo.2022.105157.
  21. He, K.P. and Ye, J.H. (2023), "Seismic dynamics of offshore wind turbine-seabed foundation: Insights from a numerical study", Renew Energ., 205, 200-221. https://doi.org/10.1016/j.renene.2023.01.076.
  22. Kuhn, M. (2000), "Dynamics of offshore wind energy converters on monopile foundation experience from the Lely offshore wind turbine", OWEN Workshop, CLRC Rutherford Appleton Laboratory, Swindon, UK.
  23. Liang, R., Yuan, Y., Fu, D.F. and Liu, R. (2020), "Cyclic response of monopile-supported offshore wind turbines under wind and wave loading in sand", Mar. Georesour. Geotech., 39(10), 1230-1243. https://doi.org/ 10.1080/1064119X.2020.1821848.
  24. Li, J., Guan, D. and Chiew, Y.M. (2020), "Temporal evolution of soil deformations around monopile foundations subjected to cyclic lateral loading", Ocean Eng., 217, 107893. https://doi.org/ 10.1016/j.oceaneng.2020.107893.
  25. Lin, Y.J. and Lin, C. (2019), "Effects of scour-hole dimensions on lateral behavior of piles in sands", Comput. Geotech., 111, 30-41. https://doi.org/ 10.1016/j.compgeo.2019.02.028.
  26. Lin, K., Xiao, S., Zhou, A.N. and Liu, H.J. (2020), "Experimental study on long-term performance of monopile-supported wind turbines (MWTs) in sand by using wind tunnel", Renew Energ., 159, 1199-1214. https://doi.org/ 10.1016/j.renene.2020.06.034.
  27. Lombardi, D., Bhattacharya, S. and Wood, D.M. (2013), "Dynamic soil-structure interaction of monopile supported wind turbines in cohesive soil", Soil Dyn. Earthq. Eng., 49, 165-180. https://doi.org/10.1016/j.soildyn.2013.01.015.
  28. Lowe, J. (2012), "Hornsea met mast-A demonstration of the 'twisted jacket' design", Proceedings of the Global Offshore Wind Conference, ExCel London, London, UK.
  29. Lu, W.J. and Zhang, G. (2020), "Long-term cyclic loading tests for offshore pile foundations based on hydraulic gradient modeling". Geotech. Test J., 44(3). 686-704. https://doi.org/10.1520/GTJ20190374.
  30. Ma, H.W., Lu, Z.Y., Li, Y.T. Chen, C. and Yang, J. (2021), "Permanent accumulated rotation of offshore wind turbine monopile due to typhoon-induced cyclic loading", Mar. Struct., 80, 103079. https://doi.org/10.1016/j.marstruc.2021.103079.
  31. Nicolai, G., Ibsen, L.B. and White, D.J. (2017), "Quantifying the increase in lateral capacity of monopiles in sand due to cyclic loads". Geotech. Lett., 7(3). 245-252. https://doi.org/10.1680/jgele.16.00187.
  32. Niu, X.D., Lu, G., Chen, X.G. and Wang, H.P. (2023), "A method for structural damage detection considering scour depth under the pile-soil interaction", Mar. Struct., 88, 103365. https://doi.org/10.1016/j.marstruc.2022.103365.
  33. Noren-Cosgriff, K. and Kaynia, A.M. (2021), "Estimation of natural frequencies and damping using dynamic field data from an offshore wind turbine", Mar. Struct., 76, 102915. https://doi.org/ 10.1016/j.marstruc.2020.102915.
  34. Prendergast, L.J. and Gavin, K. (2016), "A comparison of initial stiffness formulations for small-strain soil-pile dynamic Winkler modelling". Soil Dyn. Earthq. Eng., 81, 27-41. https://doi.org/10.1016/j.soildyn.2015.11.006.
  35. Prendergast, L.J. and Igoe, D. (2022), "Examination of the reduction in natural frequency of laterally loaded piles due to strain-dependence of soil shear modulus", Ocean. Eng., 258, 111614. https://doi.org/10.1016/j.oceaneng.2022.111614.
  36. Rathod, D., Nigitha, D. and Krishnanunni, K.T. (2021), "Experimental investigation of the behavior of monopile under asymmetric two-way cyclic lateral loads", Int. J. Geomech., 21(3), 06021001. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001920.
  37. Reese, L., Cox, W.R. and Koop, F.D. (1974), "Analysis of laterally loaded piles in sand", Proceedings of the 6th Annual Offshore Technology Conf., Houston. https://doi.org/10.4043/2080-MS.
  38. Rudolph, C., Bienen, B. and Grabe. J. (2014), "Effect of variation of the loading direction on the displacement accumulation of large-diameter piles under cyclic lateral loading in sand", Can. Geotech. J., 51(10), 1196-1206. https://doi.org/10.1139/cgj-2013-0438
  39. Truong, P., Lehane, B.M., Zania, V. and Klinkvort, R.T. (2019), "Empirical approach based on centrifuge testing for cyclic deformations of laterally loaded piles in sand", Geotechnique, 69(2), 133-145. https://doi.org/10.1680/jgeot.17.p.203.
  40. Wang, Y., Zhu, M.X. and Gong, W.M. (2022), "Lateral behavior of monopiles considering the effects of sand subsidence and densification under lateral cyclic loading", Mar Georesour. Geotech., 40(12), 1435-1445. https://doi.org/10.1080/1064119X.2021.2002985.
  41. Yu, Z.L. and Amdahl, J. (2023), "A Rayleigh-Ritz solution for high order natural frequencies and eigenmodes of monopile supported offshore wind turbines considering tapered towers and soil pile interactions", Mar. Struct., 92. 103482. https://doi.org/10.1016/j.marstruc.2023.103482.
  42. Zeng, F.H., Jiang, C. and Liu, P. (2023), "Cyclic p-y curve model of piles subjected to two-way load considering the collapse and densification of sand", Ocean. Eng., 289, 116122. https://doi.org/10.1016/j.oceaneng.2023.116122.
  43. Zorzi, G., BaessLer, M. and Gabrieli, F. (2017), "Influence of structural stiffness on ratcheting convection cells of granular soil under cyclic lateral loading", ES 175, 148-156.
  44. Zou, X., Wang, Y., Zhou, M. and Zhang, X. (2022), "Simulation of monopile-wheel hybrid foundations under eccentric lateral load in sand-over-clay". Geomech. Eng., 28(6), 585-598. https://doi.org/10.12989/gae.2022.28.6.585.