• Title/Summary/Keyword: Cycle-by-cycle current limitation

Search Result 12, Processing Time 0.023 seconds

Peak-Valley Current Mode Controlled H-Bridge Inverter with Digital Slope Compensation for Cycle-by-Cycle Current Regulation

  • Manoharan, Mohana Sundar;Ahmed, Ashraf;Park, Joung-Hu
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.1989-2000
    • /
    • 2015
  • In this paper, digital peak current mode control for single phase H-bridge inverters is developed and implemented. The digital peak current mode control is achieved by directly controlling the PWM signals by cycle-by-cycle current limitation. Unlike the DC-DC converter where the output voltage always remains in the positive region, the output of DC-AC inverter flips from positive to negative region continuously. Therefore, when the inverter operates in negative region, the control should be changed to valley current mode control. Thus, a novel control logic circuit is required for the function and need to be analyzed for the hardware to track the sinusoidal reference in both regions. The problem of sub-harmonic instability which is inherent with peak current mode control is also addressed, and then proposes the digital slope compensation in constant-sloped external ramp to suppress the oscillation. For unipolar PWM switching method, an adaptive slope compensation in digital manner is also proposed. In this paper, the operating principles and design guidelines of the proposed scheme are presented, along with the performance analysis and numerical simulation. Also, a 200W inverter hardware prototype has been implemented for experimental verification of the proposed controller scheme.

Investigation of Network Application of the Hybrid SFCLs (복합형 초전도 한류기의 한류특성에 따른 계통 적용성 검토)

  • Choe, Won-Joon;Sim, Jung-Wook;Park, Kwon-Bae;Kim, Young-Gun;Oh, Il-Sung;Hyun, Ok-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.223-225
    • /
    • 2008
  • In order to apply SFCLs into electric power systems, the urgent issues to be settled are as follows, such as initial installation price, operation and maintenance cost due to ac loss of superconductor and the life of cryostat, and high voltage and high current problems. We designed novel hybrid SFCLs which combine superconductor and conventional electric equipments including a vacuum interrupter, an electro-magnetic contactor and a current limiting reactor. The main purpose of the hybrid SFCL is to drastically reduce total usage of superconductor by adopting current commutation method by use of the superconductor and the fast switch. According to protective coordination and performance, we investigated two concepts of Hybrid SFCLs. First is a half cycle fault current limitation type and second is a non-half cycle fault current limitation type. We concluded that the non-half cycle fault current limitation type is batter than the other.

  • PDF

PERFORMANCE OF THE AUTOREGRESSIVE METHOD IN LONG-TERM PREDICTION OF SUNSPOT NUMBER

  • Chae, Jongchul;Kim, Yeon Han
    • Journal of The Korean Astronomical Society
    • /
    • v.50 no.2
    • /
    • pp.21-27
    • /
    • 2017
  • The autoregressive method provides a univariate procedure to predict the future sunspot number (SSN) based on past record. The strength of this method lies in the possibility that from past data it yields the SSN in the future as a function of time. On the other hand, its major limitation comes from the intrinsic complexity of solar magnetic activity that may deviate from the linear stationary process assumption that is the basis of the autoregressive model. By analyzing the residual errors produced by the method, we have obtained the following conclusions: (1) the optimal duration of the past time for the forecast is found to be 8.5 years; (2) the standard error increases with prediction horizon and the errors are mostly systematic ones resulting from the incompleteness of the autoregressive model; (3) there is a tendency that the predicted value is underestimated in the activity rising phase, while it is overestimated in the declining phase; (5) the model prediction of a new Solar Cycle is fairly good when it is similar to the previous one, but is bad when the new cycle is much different from the previous one; (6) a reasonably good prediction of a new cycle can be made using the AR model 1.5 years after the start of the cycle. In addition, we predict the next cycle (Solar Cycle 25) will reach the peak in 2024 at the activity level similar to the current cycle.

Exploring Capabilities of BIM Tools for Housing Refurbishment in the UK

  • Kim, Ki Pyung;Park, Kenneth S
    • Journal of KIBIM
    • /
    • v.6 no.4
    • /
    • pp.9-17
    • /
    • 2016
  • Currently whole-house refurbishment for substantial energy efficiency improvement of existing housing stock is needed to achieve the targeted 80% CO2 emission reduction. As whole-house refurbishment requires a larger capital investment for lower CO2 emission, the simultaneous use of Life Cycle Costing (LCC) and Life Cycle Assessment (LCA) methodologies are recommended to generate affordable refurbishment solutions. However, two methodologies are difficult to use due to a lack of proper LCC and LCA datasets. As a response to the current problems, many researchers explore potentials in Building Information Modelling (BIM) to improve current construction practice. As a result, a BIM tool - IES IMPACT (Integrated Material Profile And Costing Tool) - has been introduced to the UK construction industry for simultaneous calculation of LCC and LCA. Thus, this research aims at examining the capability and limitation of the IES VE/IMPACT as a BIM tool for whole-house refurbishment. This research reveals that the IES VE/IMPACT is feasible for whole-house refurbishment by providing LCC and LCA information simultaneously for informed decision on refurbishment solution selection. This research shed lights on the current problems lying on the data exchange between two different BIM tools. It is revealed that additional efforts from construction professionals and industry are required to make reliable BIM objects library with LCC and LCA datasets.

Operation characteristics of SFCLs combined with a transformer in three-phase power system

  • Jung, B.I.;Choi, H.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.4
    • /
    • pp.30-33
    • /
    • 2013
  • The studies of superconducting fault current limiter (SFCL) for reduction of the fault current are actively underway in the worldwide. In this paper, we analyzed the characteristics of a new type SFCL using the conventional transformer and superconducting elements combined mutually. The secondary and third windings of this SFCL were connected the load and the superconducting element, respectively. The electric power was provided to load connected to secondary windings of the transformer in normal state of power system. On the other hand, when the fault occurred in power system, the fault current was limited by closing the line of third winding of the transformer. At this time, the ripple phenomenon of the fault was minimized by opening the fault line in secondary winding of a transformer in power system. The sensing of the fault state was performed by the CT(current transformer) and then turn-on and turn-off switching behavior of the SFCL was performed by the SCR(silicon-controlled rectifier). As a result, the proposed SFCL limited the fault current within a half-cycle efficiently. We confirmed that the fault current limitation rate was changed according to the winding ratio of a transformer.

A Study on IDM Development for Automation of BIM-based Architectural Facade Design - Focused on Musical Proportion - (BIM기반 건축 파사드 디자인 자동화를 위한 IDM 개발에 관한 연구 - 음계비례를 중심으로 -)

  • Heo, Kyu-Souk;Choo, Seung-Yeon
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.5
    • /
    • pp.393-402
    • /
    • 2010
  • Existing construction industry is composed of several processes with various characteristics. The tendency of current construction industry is getting complicated and diversified; it has limitation to solve problems through existing processes. As a problem-solving method, BIM (Building Information Modeling), environment to manage building life cycle from design and construction to management, is being suggested. Currently, BIM is only focused on technology development by engineers, and the automation of architectural theories is insufficiency except architectural design modeling. Therefore, this research aims to back up theses drawbacks through intellectual curtain wall arrangement by using musical proportions. In order to apply to construction automation, analysised of musical proportions method are performed. The BPMN-based Process Map is listed to develop IDM for the application to BIM Software.

Experimental study on air-water countercurrent flow limitation in a vertical tube based on measurement of film thickness behavior

  • Wan, Jie;Sun, Wan;Deng, Jian;Pan, Liang-ming;Ding, Shu-hua
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1821-1833
    • /
    • 2021
  • The gas-liquid counter-current flow limitation (CCFL) is closely related to efficient and safety operation of many equipment in industrial cycle. Air-water countercurrent flow experiments were performed in a tube with diameter of 25 mm to understand the triggering mechanism of CCFL. A parallel electrode probe was utilized to measure film thickness whereby the time domain and frequency domain characteristics of liquid film was obtained. The amplitude of the interface wave is small at low liquid flow rate while it becomes large at high liquid flow rate after being disturbed by the airflow. The spectral characteristic curve shows a peak-shaped distribution. The crest exists between 0 and 10 Hz and the amplitude decreases with the frequency increase. The analysis of visual observation and characteristic of film thickness indicate that two flooding mechanisms were identified at low and high liquid flow rate, respectively. At low liquid flow rate, the interfacial waves upward propagation is responsible for the formation of CCFL onset. While flooding at high liquid flow rate takes place as a direct consequence of the liquid bridging in tube due to the turbulent flow pattern. Moreover, it is believed that there is a transition region between the low and high liquid flow rate.

Establishment of BIM-LCC Analysis System for Selecting Optimal Design Alternative using Open KBIMS Libraries (개방형 KBIMS 라이브러리를 활용한 최적설계대안 선정을 위한 BIM-LCC분석 시스템 구축)

  • Lee, Chun-Kyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.153-161
    • /
    • 2020
  • Building information modeling (BIM) is a smart construction technique that is recognized as essential for current construction facility projects. The Public Procurement Service (a construction project-ordering agency) announced a plan to introduce BIM and has required changing the operation of projects by using BIM design information. LCC analysis is essential for items, quantity, and cost information of the construction, and it is expected that efficient work will be achieved by using BIM design information. In this study, a BIM-LCC analysis system was established for selecting optimal design alternatives by actively using open KBIMS libraries. The BIM-LCC analysis system consists of a single alternative and an optimal alternative LCC analysis, but it has a limitation in that only the architecture and machine libraries have been applied. However, by applying BIM, practical use and work efficiency can be expected. In order to use the method as an LCC analysis support tool with BIM design information in the future, it will be necessary to collect user opinions and improve the UI.

A Review of Seismic Full Waveform Inversion Based on Deep Learning (딥러닝 기반 탄성파 전파형 역산 연구 개관)

  • Sukjoon, Pyun;Yunhui, Park
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.227-241
    • /
    • 2022
  • Full waveform inversion (FWI) in the field of seismic data processing is an inversion technique that is used to estimate the velocity model of the subsurface for oil and gas exploration. Recently, deep learning (DL) technology has been increasingly used for seismic data processing, and its combination with FWI has attracted remarkable research efforts. For example, DL-based data processing techniques have been utilized for preprocessing input data for FWI, enabling the direct implementation of FWI through DL technology. DL-based FWI can be divided into the following methods: pure data-based, physics-based neural network, encoder-decoder, reparameterized FWI, and physics-informed neural network. In this review, we describe the theory and characteristics of the methods by systematizing them in the order of advancements. In the early days of DL-based FWI, the DL model predicted the velocity model by preparing a large training data set to adopt faithfully the basic principles of data science and apply a pure data-based prediction model. The current research trend is to supplement the shortcomings of the pure data-based approach using the loss function consisting of seismic data or physical information from the wave equation itself in deep neural networks. Based on these developments, DL-based FWI has evolved to not require a large amount of learning data, alleviating the cycle-skipping problem, which is an intrinsic limitation of FWI, and reducing computation times dramatically. The value of DL-based FWI is expected to increase continually in the processing of seismic data.

A Study on Management and Utilization of Non-disclosure Records (비공개 기록의 관리와 활용에 관한 연구)

  • Ahn, Ji-Hyun
    • The Korean Journal of Archival Studies
    • /
    • no.13
    • /
    • pp.135-178
    • /
    • 2006
  • The response of public organizations on information offerings has affirmed that the arrangement of the management of records is an important project to be implemented ahead of the enforcement of the information disclosure system. In particular, the absence or non-disclosure of information of public organizations on records containing significant information and abuse of the secret disposition of information has demonstrated that it is imperative to improve radically the management of secret or non-disclosed records as well as overall changes of awareness. This study reviewed the reality of the current non-disclosure and management of confidential records based on the awareness on such records and proposed improvement measures. The study on non-disclosed and confidential records has been discussed from legal and administrative perspectives so that the main focus has been on the institutional aspect. Yet, there is a limitation on such discussions in that there cannot be fundamental access to issues of non-disclosed and confidential records. That is because the management of information classified as non-disclosed and confidential can be improved fundamentally when all processes from the production of the records to their management are carried out reasonably. Accordingly, since our record management system is divided into three phases of the disposition division, record center, and archives and takes a management record by being applied to the flow of the life cycle of records, we have reviewed overall issues from the production of non-disclosed and confidential records to the utilization of the records pursuant to these steps and offered directions for improvement.