• 제목/요약/키워드: Cycle Simulation

검색결과 1,634건 처리시간 0.033초

An analysis of optimal design conditions of LDPC decoder for IEEE 802.11n Wireless LAN Standard (IEEE 802.11n 무선랜 표준용 LDPC 복호기의 최적 설계조건 분석)

  • Jung, Sang-Hyeok;Na, Young-Heon;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제14권4호
    • /
    • pp.939-947
    • /
    • 2010
  • The LDPC(Low-Density Parity-Check) code, which is one of the channel encoding methods in IEEE 802.11n wireless LAN standard, has superior error-correcting capabilities. Since the hardware complexity of LDPC decoder is high, it is very important to take into account the trade-offs between hardware complexity and decoding performance. In this paper, the effects of LLR(Log-Likelihood Ratio) approximation on the performance of MSA(Min-Sum Algorithm)-based LDPC decoder are analyzed, and some optimal design conditions are derived. The parity check matrix with block length of 1,944 bits and code rate of 1/2 in IEEE 802.11n WLAN standard is used. In the case of $BER=10^{-3}$, the $E_b/N_o$ difference between LLR bit-widths (6,4) and (7,5) is 0.62 dB, and $E_b/N_o$ difference for iteration cycles 6 and 7 is 0.3 dB. The simulation results show that optimal BER performance can be achieved by LLR bit-width of (7,5) and iteration cycle of 7.

A Development of Method for Surface and Subsurface Runoff Analysis in Urban Composite Watershed (I) - Theory and Development of Module - (대도시 복합유역의 지표 및 지표하 유출해석기법 개발 (I)- 이론 및 모듈의 개발 -)

  • Kwak, Chang-Jae;Lee, Jae-Joon
    • Journal of Korea Water Resources Association
    • /
    • 제45권1호
    • /
    • pp.39-52
    • /
    • 2012
  • Surface-subsurface interactions are an intrinsic component of the hydrologic response within a watershed. In general, these interactions are considered to be one of the most difficult areas of the discipline, particularly for the modeler who intends simulate the dynamic relations between these two major domains of the hydrological cycle. In essence, one major complexity is the spatial and temporal variations in the dynamically interacting system behavior. The proper simulation of these variations requires the need for providing an appropriate coupling mechanism between the surface and subsurface components of the system. In this study, an approach for modelling surface-subsurface flow and transport in a fully intergrated way is presented. The model uses the 2-dimensional diffusion wave equation for sheet surface water flow, and the Boussinesq equation with the Darcy's law and Dupuit-Forchheimer's assumption for variably saturated subsurface water flow. The coupled system of equations governing surface and subsurface flows is discretized using the finite volume method with central differencing in space and the Crank-Nicolson method in time. The interactions between surface and subsurface flows are considered mass balance based on the continuity conditions of pressure head and exchange flux. The major module consists of four sub-module (SUBFA, SFA, IA and NS module) is developed.

Effect of Target Material and the Neutron Spectrum on Nuclear Transmutation of 99Tc and 129I in Nuclear Reactors (표적물질 및 중성자 스펙트럼이 99Tc과 129I의 원자로 내부 핵변환에 미치는 영향)

  • Kang, Seung-gu;Lee, Hyun-chul
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • 제16권2호
    • /
    • pp.195-202
    • /
    • 2018
  • As a rule, geological disposal is considered a safe method for final disposal of high-level radioactive waste. However, some long-lived fission products like $^{99}Tc$ and $^{129}I$ contained in spent nuclear fuel are highly mobile as less sorbing anionic species in the subsurface environment and can mainly cause exposure dose to the ecosystem by emission of beta rays in the hundreds of keV range. Therefore, if these two nuclides can be separated and converted with high efficiency into radioactively unharmful nuclides, this would have a positive effect on disposal safety. One candidate method is to transmute these two nuclides in nuclear reactors into short-lived nuclides or into stable nuclides. For this purpose, it is necessary to evaluate which reactor type is more efficient in burning these two nuclides. In this study, the simulation results of nuclear transmutation of $^{99}Tc$ and $^{129}I$ in light water reactor (PWR), heavy water reactor (CANDU) and fast neutron reactor (SFR, MET-1000) are compared and discussed.

A study on the Optimal Configuration Algorithm for Modeling and Improving the Performance of PV module (태양광모듈의 모델링 및 성능향상을 위한 최적구성방안에 관한 연구)

  • Jeong, Jong-Yun;Choi, Sung-Sik;Choi, Hong-Yeol;Ryu, Sang-Won;Lee, In-Cheol;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제17권5호
    • /
    • pp.723-730
    • /
    • 2016
  • Solar cells in a PV module are connected in series and parallel to produce a higher voltage and current. The PV module has performance characteristics depending on solar radiation and temperature. In addition, the PV system causes power loss by special situations, including the shadows of the surrounding environment, such as nearby buildings and trees. In other words, an increase in power loss and a decrease in life cycle can occur because of the partial shadow and hot-spot effect. Therefore, this paper proposes the optimal configuration algorithm of a bypass diode to improve the output of a PV module and one of a PV array to minimize the loss of the PV array. In addition, this paper presents a model of a PV module and PV array based on the PSIM S/W. The simulation results confirmed that the proposed optimal configuration algorithms are useful tools for improving the performance of PV system.

Lightweight Model for Energy Storage System Remaining Useful Lifetime Estimation (ESS 잔존수명 추정 모델 경량화 연구)

  • Yu, Jung-Un;Park, Sung-Won;Son, Sung-Yong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • 제13권5호
    • /
    • pp.436-442
    • /
    • 2020
  • ESS(energy storage system) has recently become an important power source in various areas due to increased renewable energy resources. The more ESS is used, the less the effective capacity of the ESS. Therefore, it is important to manage the remaining useful lifetime(RUL). RUL can be checked regularly by inspectors, but it is common to be monitored and estimated by an automated monitoring system. The accurate state estimation is important to ESS operator for economical and efficient operation. RUL estimation model usually requires complex mathematical calculations consisting of cycle aging and calendar aging that are caused by the operation frequency and over time, respectively. A lightweight RUL estimation model is required to be embedded in low-performance processors that are installed on ESS. In this paper, a lightweight ESS RUL estimation model is proposed to operate on low-performance micro-processors. The simulation results show less than 1% errors compared to the original RUL model case. In addition, a performance analysis is conducted based on ATmega 328. The results show 76.8 to 78.3 % of computational time reduction.

A Study of Optimal path Availability Clustering algorithm in Ad Hoc network (에드 혹 네트워크에서 최적 경로의 유효성 있는 클러스터링 알고리즘에 관한 연구)

  • Oh, Young-Jun;Lee, Kang-Whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제17권1호
    • /
    • pp.225-232
    • /
    • 2013
  • In this paper, we introduce a method that can be used to select the position of head node for context-awareness information. The validity of the head node optimal location is saving the energy in the path according to the clustering. It is important how to elect one of the relay node for energy efficiency routing. Existing LEACH algorithm to elect the head node when the node's energy probability distribution function based on the management of the head node is optional cycle. However, in this case, the distance of the relay node status information including context-awareness parameters does not reflect. These factors are not suitable for the relay node or nodes are included in the probability distribution during the head node selects occurs. In particular, to solve the problems from the LEACH-based hierarchical clustering algorithms, this study defines location with the status context information and the residual energy factor in choosing topology of the structure adjacent nodes. The proposed ECOPS (Energy Conserving Optimal path Schedule) algorithm that contextual information is contributed for head node selection in topology protocols. This proposed algorithm has the head node replacement situations from the candidate head node in the optimal path and efficient energy conservation that is the path of the member nodes. The new head node election technique show improving the entire node lifetime and network in management the network from simulation results.

Analysis of Mechanical Properties and Stress Crack Behavior of HOPE Geomembranes by Laboratory Installation Damage Test (실내 시공시 손상시험에 의한 HDPE 지오멤브레인의 기계적 특성 및 응력균열거동 해석)

  • Khan, Belas Ahmed;Park, Ju-Hee;Kim, Sung-Hee;Chang, Yong-Chai;Oh, Tae-Hwan;Lyoo, Won-Seok;Jeon, Han-Yong
    • Polymer(Korea)
    • /
    • 제35권3호
    • /
    • pp.203-209
    • /
    • 2011
  • Two smooth and textured surfaced HDPE geomembranes (GMs) were cut into dumbbell shape and notched where depth of the notch produced a ligament thickness of 10% to 90% of the nominal thickness with the specimen at 10% interval. A series of laboratory simulation test for installation damage were carried out at different loading cycles on HDPE GMs in accordance with ISO 10722 test method and the effect of number of loading cycle on installation damage was compared. It was found that yield stress and elongation at yield point decreased gradually as the notch depth was increased. Both installation damaged and notched, GMs were used to understand stress crack behavior and this behavior was observed through NCTL test at $50{\pm}1^{\circ}C$ at different yield stresses immerging in pH 4 and pH 12 buffer solutions. Over 35% tensile load, GMs became vulnerable to stress cracking. Both damaged and notched GMs showed the same trend. Especially, notched GMs showed less strength than installation damaged GMs at every stress cracking test condition.

Concept of Seasonality Analysis of Hydrologic Extreme Variables and Design Rainfall Estimation Using Nonstationary Frequency Analysis (극치수문자료의 계절성 분석 개념 및 비정상성 빈도해석을 이용한 확률강수량 해석)

  • Lee, Jeong-Ju;Kwon, Hyun-Han;Hwang, Kyu-Nam
    • Journal of Korea Water Resources Association
    • /
    • 제43권8호
    • /
    • pp.733-745
    • /
    • 2010
  • Seasonality of hydrologic extreme variable is a significant element from a water resources managemental point of view. It is closely related with various fields such as dam operation, flood control, irrigation water management, and so on. Hydrological frequency analysis conjunction with partial duration series rather than block maxima, offers benefits that include data expansion, analysis of seasonality and occurrence. In this study, nonstationary frequency analysis based on the Bayesian model has been suggested which effectively linked with advantage of POT (peaks over threshold) analysis that contains seasonality information. A selected threshold that the value of upper 98% among the 24 hours duration rainfall was applied to extract POT series at Seoul station, and goodness-fit-test of selected GEV distribution has been examined through graphical representation. Seasonal variation of location and scale parameter ($\mu$ and $\sigma$) of GEV distribution were represented by Fourier series, and the posterior distributions were estimated by Bayesian Markov Chain Monte Carlo simulation. The design rainfall estimated by GEV quantile function and derived posterior distribution for the Fourier coefficients, were illustrated with a wide range of return periods. The nonstationary frequency analysis considering seasonality can reasonably reproduce underlying extreme distribution and simultaneously provide a full annual cycle of the design rainfall as well.

A Power-aware Branch Predictor for Embedded Processors (내장형 프로세서를 위한 저전력 분기 예측기 설계 기법)

  • Kim, Cheol-Hong;Song, Sung-Gun
    • The KIPS Transactions:PartA
    • /
    • 제14A권6호
    • /
    • pp.347-356
    • /
    • 2007
  • In designing a branch predictor, in addition to accuracy, microarchitects should consider power consumption, especially for embedded processors. This paper proposes a power-aware branch predictor, which is based on the gshare predictor, by accessing the BTB (Branch Target Buffer) only when the prediction from the PHT (Pattern History Table) is taken. To enable the selective access to the BTB, the PHT in the proposed branch predictor is accessed one cycle earlier than the traditional PHT to prevent the additional delay. As a side effect, two predictions from the PHT are obtained through one access to the PHT, which leads to more power savings. The proposed branch predictor reduces the power consumption, not requiring any additional storage arrays, not incurring additional delay (except just one MUX delay) and never harming accuracy. Simulation results show that the proposed predictor reduces the power consumption by $35{\sim}48%$ compared to the traditional predictor.

Development of Incident Detection Algorithm Using Naive Bayes Classification (나이브 베이즈 분류기를 이용한 돌발상황 검지 알고리즘 개발)

  • Kang, Sunggwan;Kwon, Bongkyung;Kwon, Cheolwoo;Park, Sangmin;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • 제17권6호
    • /
    • pp.25-39
    • /
    • 2018
  • The purpose of this study is to develop an efficient incident detection algorithm by applying machine learning, which is being widely used in the transport sector. As a first step, network of the target site was constructed with micro-simulation model. Secondly, data has been collected under various incident scenarios produced with combination of variables that are expected to affect the incident situation. And, detection results from both McMaster algorithm, a well known incident detection algorithm, and the Naive Bayes algorithm, developed in this study, were compared. As a result of comparison, Naive Bayes algorithm showed less negative effect and better detect rate (DR) than the McMaster algorithm. However, as DR increases, so did false alarm rate (FAR). Also, while McMaster algorithm detected in four cycles, Naive Bayes algorithm determine the situation with just one cycle, which increases DR but also seems to have increased FAR. Consequently it has been identified that the Naive Bayes algorithm has a great potential in traffic incident detection.