Browse > Article
http://dx.doi.org/10.3741/JKWRA.2012.45.1.39

A Development of Method for Surface and Subsurface Runoff Analysis in Urban Composite Watershed (I) - Theory and Development of Module -  

Kwak, Chang-Jae (School. of Civil Engrg., Kumoh National Institute of Technology)
Lee, Jae-Joon (School. of Civil and Environmental Engrg., Kumoh National Institute of Technology)
Publication Information
Journal of Korea Water Resources Association / v.45, no.1, 2012 , pp. 39-52 More about this Journal
Abstract
Surface-subsurface interactions are an intrinsic component of the hydrologic response within a watershed. In general, these interactions are considered to be one of the most difficult areas of the discipline, particularly for the modeler who intends simulate the dynamic relations between these two major domains of the hydrological cycle. In essence, one major complexity is the spatial and temporal variations in the dynamically interacting system behavior. The proper simulation of these variations requires the need for providing an appropriate coupling mechanism between the surface and subsurface components of the system. In this study, an approach for modelling surface-subsurface flow and transport in a fully intergrated way is presented. The model uses the 2-dimensional diffusion wave equation for sheet surface water flow, and the Boussinesq equation with the Darcy's law and Dupuit-Forchheimer's assumption for variably saturated subsurface water flow. The coupled system of equations governing surface and subsurface flows is discretized using the finite volume method with central differencing in space and the Crank-Nicolson method in time. The interactions between surface and subsurface flows are considered mass balance based on the continuity conditions of pressure head and exchange flux. The major module consists of four sub-module (SUBFA, SFA, IA and NS module) is developed.
Keywords
surface flow; subsurface flow; interaction; coupling; rainfall-runoff analysis module;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Zerihun, D., Furman, A., Warrick, A.W., and Sanchez, C.A. (2005a). "A Coupled Surface-Subsurface Flow Model for Improved Basin Irrigation Management." J. Irrig. Drain. Eng., Vol. 131, pp. 111-128.   DOI   ScienceOn
2 Zerihun, D., Furman, A., Warrick, A.W., and Sanchez, C.A. (2005b). "A Coupled Surface-Subsurface Solute Transport Model for Irrigation Borders and Basins: I. Model Development." J. Irrig. Drain. Eng., Vol. 131, pp. 396-406.   DOI   ScienceOn
3 Zerihun, D., Sanchez, C.A., Furman, A., and Warrick, A.W. (2005c). "A Coupled Surface-Subsurface Solute Transport Model for Irrigation Borders and Basins: II. Model Evaluation." J. Irrig. Drain. Eng., Vol. 131, pp. 407-419.   DOI   ScienceOn
4 Gandolfi, C., and Savi, F. (2000). "A Mathematical Model for the Coupled Simulation of Surface Runoff and Infiltration." J. Agric. Eng. Res., Vol. 75, pp. 49-55.   DOI   ScienceOn
5 Govindaraju, R.S., and Kavvas, L.M. (1991). "Dynamics of moving boundary overland flows over infiltrating surfaces at hillslopes." Water Resour. Res., Vol. 27, pp. 1885-1898.   DOI
6 Gunduz, O., and Aral, M.M. (2005). "River Networks and Groundwater Flow: A Simultaneous Solution of a Coupled System." J. Hydrol., Vol. 301, pp. 216-234.   DOI
7 Hromadka, T.V., and Yen, C. (1986), "A Diffusion Hydrodynamic Model." U.S. Geological Survey Water Resources Investigations Report, 87-4137.
8 Julien, P.Y., and Saghafian, B. (1991). CASC2D User's Manual, A Two-Dimensional Watershed Rainfall-Runoff Model. Center for Geosciences-Hydrologic Modeling Group, Colorado State University (CER90-91PYJ-BS-12).
9 Katopodes, N.D., and Strelkoff, T.S. (1977). "Dimensionless Solution of Border Irrigation Advance." J. Irrig. Drain. Div. Am. Soc. Civ. Eng., Vol. 103, pp. 401-407.
10 Kouznetsov, M.Y., Roodsari, R., Pachepsky, Y.A., Shelton, D.R., Sadeghi, A.M., Shirmohammadi, A., and Starr, J.L. (2007). "Modeling Manure-Borne Bromide and Fecal Coliform Transport with Runoff and Infiltration at a Hillslope." J. Environ. Manage., Vol. 84, pp. 336-346.   DOI   ScienceOn
11 정인균(2010). 분포형 강우-유출모형의 토양수분 및 격자 흐름추적 알고리듬 개발 및 적용. 박사학위논문, 건국대학교, pp. 8-13.
12 최현상, 한건연(2004a). "GIS와 불확실도 해석기법을 이용한 분포형 강우-유출 모형의 개발(I)-이론 및 모형의 개발-." 한국수자원학회논문집, 한국수자원학회, 제37권, 제4호, pp. 329-339.
13 최현상, 한건연(2004b). "GIS와 불확실도해석기법을이용한 분포형 강우-유출 모형의 개발(II)-적용 및 분석-." 한국수자원학회논문집, 한국수자원학회, 제37권, 제4호, pp. 341-352.
14 Abbott, M.B., Bathurst, J.C., Cunge, J.A., O'Conncll, P.E., and Rasmussen, J. (1986b). "An Introduction to the European Hydrological System-Systeme Hydrologique Europeen SHE. 2: Structure of a Physically Based Distributed Modelling System." J. Hydrol., 87, pp. 61-77.   DOI   ScienceOn
15 Abbasi, F., Feyen, J., Roth, R.L., Sheedy, M. and van Genuchten, M.Th. (2003a). "Water flow and solute transport in furrow-irrigated fields." Irrig. Sci., Vol. 22, pp. 57-65.   DOI   ScienceOn
16 Abbasi, F., Simunek, J., van Genuchten, M. Th., Feyen, J., Adamsen, F.J., Hunsaker, D.J., Strelkoff, T.S. and Shouse, P. (2003b). "Overland water flow and solute transport: Model development and field-data analysis." J. Irrig. Drain. Eng., Vol. 129, pp. 71-81.   DOI   ScienceOn
17 Abbott, M.B., Bathurst, J.C., Cunge, J.A., O'Conncll, P.E., and Rasmussen, J. (1986a). "An Introduction to the European Hydrological System-Systeme Hydrologique Europeen SHE. 1: History and Philosophy of a Physically Based Distributed Modelling System." J. Hydrol., Vol. 87, pp. 45-59.   DOI
18 Akanbi, A.A., and Katopodes, N.D. (1988). "A Model for Flood Propagation on Initially Dry Land." J. Hydraul. Eng., Vol. 114, pp. 689-706.   DOI   ScienceOn
19 Bixio, A.C., Gambolati, G., Paniconi, C., Putti, M., Shestopalov, V.M., Bublias, V.N., Bohuslavsky, A.S., Kasteltseva, N.B., and Rudenko, Y.F. (2002). "Modeling Groundwater-Surface Water Interactions Including Effects of Morphogenetic Depressions in the Chernobyl Exclusion Zone." Environ. Geol., Vol. 42, pp. 162-177.   DOI   ScienceOn
20 Cheng, X., and Anderson, M.P. (1993). "Numerical Simulation of Ground-Water Interaction with Lakes allowing for Fluctuating Lake Levels." Ground Water, Vol. 31, pp. 929-933.   DOI   ScienceOn
21 Utah State University (1999). SIRMOD II : Surface Irrigation Simulation, Evaluation, and Design: User's Guide and Technical Note. Utah State Univ., Logan.
22 Strelkoff, T.S., Clemmens, A.J., and Schmidt, B.V. (1998). "Computer Program for Simulating Flow in Surface Irrigation : Furrows-. Basins-. Borders." U.S. Water Conserv. Lab., Phoenix, AZ. SRFR v.3.31.
23 U.S. Arid-Land Agricultural Research Center. (2006). WinSRFR 1.0 user manual(draft). Available at policy. nrcs.usda.gov/media/pdf/UG_210_7_10_a.pdf(verified 29 Mar. 2008). USALARC, Maricopa, AZ.
24 U.S. Army Corps of Engineers (2000). HEC-HMS Hydrologic Modeling System User's Manual. Hydrol. Eng. Ctr., U.S. Army Corps of Engineers, Davis, CA.
25 Utah State University (2003). SIRMOD III: Surface Irrigation Simulation, Evaluation and Design: User's Guide and Technical Note. Utah State Univ., Logan.
26 VanderKwaak, J.E. (1999). Numerical Simulation of Flow and Chemical Transport in Integrated Surface-Subsurface Hydrologic System. Ph.D. thesis., Univ. of Waterloo, Waterloo, ON, Canada.
27 Zerihun, D., Furman, A., Sanchez, C.A., and Warrick, A.W. (2003). "Calculation of Recession in Basins and Closed-End Furrows: Problems and Simplified Solutions." In Proc. Int. Conf. on Irrig., and Drain., 2nd, Phoenix, AZ. 12-5 May 2003. U.S. Committee on Irrigation and Drainage, Denver, CO. pp. 767-784.
28 Vieux, B.E. (2002). "Predictability of Flash Floods Using Distributed Parameter Physics-Based Models, Appendix B in: Report of a Workshop on Predictability and Limits to prediction in Hydrologic Systems." Committee on Hydrologic Science, National Research Council, National Academy Press, ISBN 0-309-08347-8. pp. 77-82.
29 Wohling, Th., Singh, R., and Schmitz, G.H. (2004). "Physically Based Modeling of Interacting Surface-Subsurface Flow during Furrow Irrigation Advance." J. Irrig. Drain. Eng., Vol. 130, pp. 349-356.   DOI   ScienceOn
30 Wohling, Th., Frohner, A., Schmitz, G.H., and Liedl, R. (2006). "Efficient Solution of the Coupled One-Dimensional Surface-Two-Dimensional Subsurface Flow during Furrow Irrigation Advance." J. Irrig. Drain. Eng., Vol. 132, pp. 380-388.   DOI   ScienceOn
31 Liang, D., Falconer, R.A. and Lin, B. (2007). "Coupling surface and subsurface flows in a depth averaged flood wave model." J. Hydrol., Vol. 337, pp. 147-158.   DOI
32 McDonald, M.G., and Harbaugh, A.W. (1988). "A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model." Tech. of Water-Resour. Invest. 06-A1. USGS, Reston, VA.
33 Ogden, F.L. (1997). Premier : Using WMS for CASC2D Data Development. Brigham Young University, Provo, UT.
34 Panday, S., and Huyakorn, P.S. (2004). "A Fully Coupled Physically-Based Spatially Distributed Model for Evaluating Surface/Subsurface Flow." Adv. Water Resour., Vol. 27, pp. 361-382.   DOI   ScienceOn
35 Refsgaard, J.C., and Storm, B. (1995). "MIKE-SHE." In V.P. Singh (ed.) Computer models of watershed hydrology. Water Resour. Publ., Highlands Ranch, CO., pp. 809-846
36 김성준(1998). "격자기반의 운동파 강우유출모형 개발(I)-이론 및 모형-." 한국수자원학회논문집, 한국수자원학회, 제31권, 제3호, pp. 303-308.
37 고덕구(1989). 소유역의 장기유출 예측을 위한 모의발생 수문모형의 개발. 박사학위논문, 서울대학교.
38 김남원, 정일문, 원유승(2004a). "완전 연동형 SWATMODFLOW결합모형, (I) 모형의 개발." 한국수자원학회논문집, 한국수자원학회, 제37권, 제6호, pp. 499-507.
39 김문모, 이정우, 이재응(2007). "격자기반의 도시유역 지표면 유출모형의 개발 및 적용." 한국수자원학회논문집, 한국수자원학회, 제40권, 제1호, pp. 25-38.
40 김성준, 채효석, 신사철(1998). "격자기반의 운동파 강우유출모형 개발(II)-적용예-." 한국수자원학회논문집, 제31권, 제3호, pp. 309-315.
41 신철균, 조효섭, 정관수, 김재한(2004). "저류함수기법을 이용한 격자기반의 강우-유출 모형의개발." 한국수자원학회논문집, 한국수자원학회, 제37권, 제11호, pp. 969-978.
42 유동훈, 오윤창(2000). "지표면-지하수의 연계 수치모형." 한국수자원학회 학술발표회논문집, 한국수자원학회, pp. 359-364.
43 Singh, V., and Bhallamudi, S.M. (1996). "Complete Hydrodynamic Border-Strip Irrigation Model." J. Irrig. Drain. Eng., Vol. 122, pp. 189-197.   DOI   ScienceOn
44 Rojas, R. (2002). GIS-Based Upland Erosion Modeling, Geovisualization and Grid Size Effects on Erosion Simulations with CASC2D-SED. PhD thesis, Department of Civil Engineering, Colorado State University, Fort Collins, Colorado.
45 Schwankl, L.J., Raghuwanshi, N.S. and Wallender, W.W. (2000). "Furrow irrigation performance under spatially varying conditions." J. Irrig. Drain. Eng., Vol. 126, pp. 355-361.   DOI   ScienceOn
46 Singh, K.P. (1968), "Some factor affecting baseflow." Water Resources Research, Vol. 4, No. 5, pp. 985-999   DOI
47 Singh, V., and Bhallamudi, S.M. (1997). "Hydrodynamic Modeling of Basin Irrigation." J. Irrig. Drain. Eng., Vol. 123, pp. 407-414.   DOI   ScienceOn
48 Singh, V., and Bhallamudi, S.M. (1998). "Conjunctive Surface-Subsurface Modeling of Overland Flow." Adv. Water Resour., Vol. 21, pp. 567-579.   DOI   ScienceOn
49 Smith, R.E., and Woolhiser, D.A. (1971). "Overland Flow on an Infiltrating Surface." Water Resour. Res., Vol. 7, pp. 899-913.   DOI
50 Council, G.W. (1999). A Lake Package for MODFLOW (LAK2) : Documentation and User's Manual. Version 2.2. HSI GeoTrans, Roswell, GA.
51 Downer, C.W., and Ogden, F.L. (2002). GSSHA User's Manual, Gridded Surface-Subsurface Hydrologic Analysis. Version 1.43 for WMS 6.1, EDRL Techincal Report, Engineering Research and Development Center, U.S. Army Corps of Engineers, Vicksburg.
52 Fiedler, F.R., and Ramirez, J.A. (2000). "A Numerical Method for Simulating Discontinuous Shallow Flow over an Infiltrating Surface." Int. J. Numer. Methods Fluids, Vol. 32, pp. 219-240.   DOI   ScienceOn