• Title/Summary/Keyword: Current power generation

Search Result 1,270, Processing Time 0.031 seconds

A Study on Future System Construction Using WSCR Strengthness Index based on Python (Python 기반 WSCR 강건 지수를 이용한 미래계통 구축에 관한 연구)

  • Park, Seong-Jun;Hur, Jin;Kim, Hyun-Jin;Cho, Yoon-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.8
    • /
    • pp.994-1001
    • /
    • 2018
  • In this paper, to studied about future power system construction using PSS / E-Python API. Python-based future system automatical construction methods and modeling of renewable sources. it confirmed the stability of the powert system for each renewable area by calculating the weighted short circuit ratio (WSCR) index. it calculated the short circuit ratio (SCR) and selected the transmission line linkage scenario to improve the stability of vulnerable areas. it confirmed the WSCR index improvement through the selected transmission line linkage of scenario, and analyzed the stability of the renewable power system applying the scenario. It describes Facts and Shunt devices adjustment for the load flow convergence. It describes the stable methed of the bus voltage through the transformer Ratio Tap adjustment. By performing PSS/E ASCC using the Python it was performed three-phase short circuit fault capacity analysis, it is confirmed whether excess of the fault current circuit breaker capacity. In order to contingency accident analysis, it have described the generation of one or two line list of each areas using the Python. The list is used to contingency analysis and describe the soluted of the transmission line overload through comparison before and after adding the scenario line.

A study on fundametal properties of thermoelectric power plant pond-ash in Korea (국내 화력발전소 매립회의 기초물성에 관한 연구)

  • Lee, Bong-Chun;Jung, Sang-Hwa;Kim, Jin-Sung;Kim, Joo-Hyung;Moon, Jae-Heum;Kim, Tae-Sang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.841-844
    • /
    • 2008
  • Non-refining fly ash and bottom ash, the byproducts generated from the coal-fired power stations, have usually been disposed of in onshore ash disposal sites. With an increase of power consumption due to industrial development, the generation of coal ash has been growing tremendously. Current insufficiency of disposal sites and environmental concerns over newly-built disposal sites have also led a growing need to utilize the coal ash. Accordingly, this paper compares and analyzes the fundamental properties of the coal ash collected from each disposal sites in order to increase the usability of the coal ash generated from coal-fired power stations. The results of the study indicate that coal ash shall be separately applied by the properties for each intended use as the ash greatly differs in its properties depending on the site of disposal. In particular, it is shown that the overall evaluation on the ash shall be necessary as the quality might be varied by the change of absorptance when applied as an aggregate for concrete. From the examination on the salt content, it has been observed that the ash can be applied as an aggregate for concrete only after more than 3 times of washing process.

  • PDF

Evaluation of Material Characteristics of Suspension-Type Porcelain Insulators for 154 KV Power Transmission Lines

  • Choi, In-Hyuk;Park, Joon-Young;Kim, Tae-gyun;Yoon, Yong-Beum;Yi, Junsin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.4
    • /
    • pp.207-210
    • /
    • 2017
  • The suspension arrangement of insulators provides flexibility and assists in power transmission in transmission lines. The performance of the insulator string is strongly influenced by the environmental conditions to which it is exposed, its shape and the inherent material properties of suspension-type insulators. The suspension-type insulators are mostly made from glass, porcelain and ceramic material due to their high resistivity. Irregularity in charge distribution throughout the porcelain insulator may lead to accelerated aging and electrical breakdown. A very high and steep lightning impulse voltage may also cause breakdown of suspension-type insulators. We investigated various material characteristics such as alumina addition, surface morphology, x-ray diffraction pattern and relative density of suspension porcelain insulators manufactured in 1989 (36,000 lbs.), 1995 (36,000 lbs.) and 2001 (36,000 lbs.) by the KRI Company for use in 154 kV high power transmission lines. We compared the material characteristics of these porcelain insulators with that of the top-of-the-line porcelain insulators (36,000 lbs.) manufactured by the NGK Company in 2000. These suspension-type porcelain insulators were exposed to arc and flashover tests to examine their electrical and mechanical strength. It was noted that alumina addition (17 wt.%) for K-2001 was one of the major contributors to the enhancement of the performance of the porcelain insulators and to their ability to withstand very high current generation during the arc test. The porcelain insulators manufactured during 2001 also showed the highest relative density of 95.8% as compared to the other insulators manufactured in 1989 and 1995 respectively 94.2% and 91.5%. We also discuss reports of various failure modes of suspension-type porcelain insulators.

Blockchain for Securing Smart Grids

  • Aldabbagh, Ghadah;Bamasag, Omaimah;Almasari, Lola;Alsaidalani, Rabab;Redwan, Afnan;Alsaggaf, Amaal
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.255-263
    • /
    • 2021
  • Smart grid is a fully-automated, bi-directional, power transmission network based on the physical grid system, which combines sensor measurement, computer, information communication, and automatic control technology. Blockchain technology, with its security features, can be integrated with Smart Grids to provide secure and efficient power management and transmission. This paper dicusses the deployment of Blockchain technology in Smart Grid. It presents application areas and protocols in which blockchain can be applied to in securing smart grid. One application of each area is explored in detail, such as efficient peer-to-peer transaction, lower platform costs, faster processes, greater flexibility in power generation to transmission, distribution and power consumption in different energy storage systems, current barriers obstructing the implementation of blockchain applications with some level of maturity in financial services but concepts only in energy and other sectors. Wide range of energy applications suggesting a suitable blockchain architecture in smart grid operations, a sample block structure and the potential blockchain technicalities employed in it. Also, added with efficient data aggregation schemes based on the blockchain technology to overcome the challenges related to privacy and security in the smart grid. Later on, consensus algorithms and protocols are discussed. Monitoring of the usage and statistics of energy distribution systems that can also be used to remotely control energy flow to a particular area. Further, the discussion on the blockchain-based frameworks that helps in the diagnosis and maintenance of smart grid equipment. We have also discussed several commercial implementations of blockchain in the smart grid. Finally, various challenges have been discussed for integrating these technologies. Overall, it can be said at the present point in time that blockchain technology certainly shows a lot of potentials from a customer perspective too and should be further developed by market participants. The approaches seen thus far may have a disruptive effect in the future and might require additional regulatory intervention in an already tightly regulated energy market. If blockchains are to deliver benefits for consumers (whether as consumers or prosumers of energy), a strong focus on consumer issues will be needed.

25 kW, 300 kHz High Step-Up Soft-Switching Converter for Next-Generation Fuel Cell Vehicles (차세대 연료전지 자동차용 25kW, 300kHz 고승압 소프트 스위칭 컨버터)

  • Kim, Sunju;Tran, Hai Ngoc;Kim, Jinyoung;Kieu, Huu-Phuc;Choi, Sewan;Park, Jun-Sung;Yoon, Hye-Sung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.6
    • /
    • pp.404-410
    • /
    • 2021
  • This paper proposes a high step-up converter with zero-voltage transition (ZVT) cell for fuel cell electric vehicle. The proposed converter applies a ZVT cell to a dual floating output boost converter (DFOBC) so that not only the main switch but also the ZVT switch can achieve full-range soft switching. The current rating of the ZVT switch is 17% of the main switch. The proposed converter has high reliability in that no timing issue occurs. Therefore, online calculation is not required. The minimum turn-on time of the ZVT switch that guarantees soft switching at all loads and input/output voltage is obtained by analysis. In addition, the proposed DFOBC allows the use of a 650 V device even at 800 V output and has the advantage of being able to boost the voltage by 3.5 times with 0.56 duty. Planar coupled inductor with PCB winding was successfully implemented with the converter operated at 300 kHz. The 25 kW prototype achieves peak efficiency of 99% and power density of 63 kW/L.

Analysis of Electric Vehicle's Environmental Benefits from the Perspective of Energy Transition in Korea (에너지 전환정책에 따른 전기자동차의 환경편익 추정연구)

  • Jeon, Hocheol
    • Environmental and Resource Economics Review
    • /
    • v.28 no.2
    • /
    • pp.307-326
    • /
    • 2019
  • The electric vehicle is a representative measure to reduce greenhouse gas and local air pollutants in the transportation sector. Most countries provide purchase subsidies and tax reductions to promote electric vehicle sales. The electric vehicles have been considered as zero-emission vehicles(ZEV) in light of the fact that there has been no pollutant emission during driving. However, recent studies have pointed out that the pollutant emitted from the process of generating electricity used for charging the electric vehicles need to be treated as emissions of the electric vehicles. Furthermore, the environmental benefits of electric vehicle replacing the internal combustion vehicle vary with the power mix. In line with the recent studies, this study analyzes the impact of electric vehicles based on the current power mix and future energy transition scenarios in Korea. To estimate the precise air pollutants emission profile, this study uses hourly electricity generation and TMS emission data for each power plant from 2015 to 2016. The estimation results show that the electric vehicles under the current power mix generate the environmental benefits of only -0.41~10.83 won/km. Also, we find that the environmental benefit of electric vehicle will significantly increase only when the ratio of the coal-fired power plant is reduced to a considerable extent.

Analysis of Coefficiency According to Blade rpm Change in Tidal Current Power Generation System (조류발전 시스템 내 블레이드 회전수 변화에 따른 효율 특성 분석)

  • Lee, Uk Jae;Han, Seok Jong;Bak, Da In;Jeong, Shin Taek
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.5
    • /
    • pp.314-319
    • /
    • 2019
  • The numerical simulation method was used to analyze the flow velocity change and mechanical coefficient characteristics of the blade in the shroud system that changes with the initial flow velocity and the blade rpm. In the analysis condition, the initial flow velocity was varied from 0.35 m/s to 1.0 m/s, and the blade rpm varied from 50 rpm to 300 rpm. Through this, the mechanical coefficient was estimated. The flow velocity changes tended to increase more than 1.8 times at the middle point compared to the inlet. When the flow velocity ratio was 0.75 m/s compared to the initial flow velocity of 0.5 m/s, the flow velocity ratio decreased. The mechanical coefficient using the torque of the blade also showed the highest coefficient at 0.5 m/s, and the trends were similar. On the other hand, the maximum coefficient was estimated to be about 20.88% in TSR 4.77 when the initial flow velocity was 0.5 m/s. The mechanical coefficient analysis of blades in this study is expected to provide the basic data for hydraulic model experimental.

A Plan of Spatial Data Modeling for Tidal Power Energy Development (조력에너지 개발을 위한 공간데이터 모델링 방안)

  • Oh, Jung-Hee;Choi, Hyun-Woo;Park, Jin-Soon;Lee, Kwang-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.3
    • /
    • pp.22-35
    • /
    • 2011
  • Incheon Bay has a suitable condition for tidal power generation due to the high tidal range by topographical effect. Therefore a study on the technology development for tidal energy utilization has been promoted since 2006. It is needed to deduce optimal alternatives to determine the suitable location of facilities for tidal power generation and to reduce the environmental damage from development. In order to carry out efficiently this mission, spatial information system is essential to manage and use various spacial elements related to the development and conservation. In this study, for the development of tidal energy, spatial data could be defined as three kinds of dataset. Fundamental dataset is defined as spatial data such as tide, tidal current, wave, erosion and sedimentation. Framework dataset is composed of topographical map, facility map and bathymetry. The reference dataset is composed of marine ecology and environment having the characteristics of thematic map. This study is mainly aimed at establishing methodology of conceptual spatial data modeling classifying as essential data model and optional data model through the definition of the components of spatial data.

A Pre-Feasibility Test of Introducing Renewable Energy Hybrid Systems -Case Studies for 3 Off-Grid Islands- (도서지역 신·재생복합 전력시스템 보급 타당성 분석 -3개 도서지역 분석결과-)

  • Jang, HaNa;Kim, Suduk
    • Environmental and Resource Economics Review
    • /
    • v.15 no.4
    • /
    • pp.693-712
    • /
    • 2006
  • A pre-feasibility test is done for renewable energy hybrid power systems at off~grid islands in which the current power supply is provided only by diesel generation. We apply Homer (Hybrid Optimization Model for Electric Renewables) which was developed by the National Renewable Energy Laboratory (NREL) for the analysis to identify the cost-minimizing combination of power generating facilities for the given load profiles. Chuja-Do, Geomun-Do and Youngsan-Do have been selected for our analysis considering the wind resources data of the Korea Institute of Energy Research (KIER). Information on wind speed, solar radiation and temperature is also used for the analysis. System component cost information from overseas market has been used due to the lack of domestic information. Site specific Load profile for electricity demand for those islands are reconstructed based on the partial survey results obtained form other sources. The LCOE of the least cost hybrid power systems for Chuja-Do, Geomun-Do and Youngsan-Do are $0.278/kWh, $0.234/kWh and $0.353/kWh, respectively Considering the fact that diesel generation is being subsidized at the price of $0.300/kWh by the government, first 2 cases are economically feasible for the introduction of renewable energy hybrid systems to those islands. But the third case of Youngsan-Do does not meet the criteria. The basic differences of these pre-feasibility test results are from the differences of the site specific renewable energy conditions, especially wind resources. In summary, promoting hybrid systems in the off-grid remote island should be based on the economic feasibility test results. Not all the off-grid islands are feasible for introducing this renewable energy hybrid system.

  • PDF

Estimation of Leg Collision Strength for Large Wind Turbine Installation Vessel (WTIV) (대형 해상풍력발전기 설치 선박(WTIV) Leg구조의 충돌 강도평가)

  • Park, Joo-Shin;Ma, Kuk-Yeol;Seo, Jung-Kwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.5
    • /
    • pp.551-560
    • /
    • 2020
  • Recently, the offshore wind power generator market is expected to grow significantly because of increased energy demand, reduced dependence on fossil fuel-based power generation, and environmental regulations. Consequently, wind power generation is increasing worldwide, and several attempts have been made to utilize offshore wind power. Norway's Petroleum Safety Authority (PSA) requires a leg-structure design with a collision energy of 35 MJ owing to the event of a collision under operation conditions. In this study, the results of the numerical analysis of a wind turbine installation vessel subjected to ship collision were set such that the maximum collision energy that the leg could sustain was calculated and compared with the PSA requirements. The current leg design plan does not satisfy the required value of 35 MJ, and it is necessary to increase the section modulus by more than 200 % to satisfy the regulations, which is unfeasible in realistic leg design. Therefore, a collision energy standard based on a reasonable collision scenario should be established.