DOI QR코드

DOI QR Code

Evaluation of Material Characteristics of Suspension-Type Porcelain Insulators for 154 KV Power Transmission Lines

  • 투고 : 2017.06.05
  • 심사 : 2017.06.09
  • 발행 : 2017.08.25

초록

The suspension arrangement of insulators provides flexibility and assists in power transmission in transmission lines. The performance of the insulator string is strongly influenced by the environmental conditions to which it is exposed, its shape and the inherent material properties of suspension-type insulators. The suspension-type insulators are mostly made from glass, porcelain and ceramic material due to their high resistivity. Irregularity in charge distribution throughout the porcelain insulator may lead to accelerated aging and electrical breakdown. A very high and steep lightning impulse voltage may also cause breakdown of suspension-type insulators. We investigated various material characteristics such as alumina addition, surface morphology, x-ray diffraction pattern and relative density of suspension porcelain insulators manufactured in 1989 (36,000 lbs.), 1995 (36,000 lbs.) and 2001 (36,000 lbs.) by the KRI Company for use in 154 kV high power transmission lines. We compared the material characteristics of these porcelain insulators with that of the top-of-the-line porcelain insulators (36,000 lbs.) manufactured by the NGK Company in 2000. These suspension-type porcelain insulators were exposed to arc and flashover tests to examine their electrical and mechanical strength. It was noted that alumina addition (17 wt.%) for K-2001 was one of the major contributors to the enhancement of the performance of the porcelain insulators and to their ability to withstand very high current generation during the arc test. The porcelain insulators manufactured during 2001 also showed the highest relative density of 95.8% as compared to the other insulators manufactured in 1989 and 1995 respectively 94.2% and 91.5%. We also discuss reports of various failure modes of suspension-type porcelain insulators.

키워드

참고문헌

  1. S. W. Han, I. H. Choi, and D. I. Lee, 2007 Electrical Insulation Conference and Electrical Manufacturing Expo (IEEE, Nashville, TN, USA, 2007) p. 114. [DOI: http://dx.doi.org/10.1109/EEIC.2007.4562600]
  2. P. Unahalekhaka and S. Phonkaphon, Energy Procedia, 89, 110 (2016). [DOI: https://doi.org/10.1016/j.egypro.2016.05.017]
  3. W. M. Cam and U. Senapati, J. Am. Ceram. Soc., 81, 3 (1998). [DOI: http://dx.doi.org/10.1111/j.1151-2916.1998.tb02290.x]
  4. K. Hamano, Z. Nakagawa, and M. Hasegawa, J. Ceram. Soc. Jpn., 100, 1066 (1992). [DOI: http://doi.org/10.2109/jcersj.100.1066]
  5. M. Amin, M. Akbar, and M. Salman, Sci. China Ser. E-Tech. Sci., 50, 697 (2007). [DOI: http://dx.doi.org/10.1007/s11431-007-0053-x]
  6. J. K. Lee, J. Y. Park, B. H. Cho, and K. Y. Oh, J. Elec. Eng. Tech., 7, 23 (2012). [DOI: http://dx.doi.org/10.5370/JEET.2012.7.1.23]
  7. A. Roula, K. Boudeghdegh, and N. Boufafa, Ceramica, 55, 206 (2009). [DOI: http://dx.doi.org/10.1590/S0366-69132009000200014]
  8. S. W. Han, H. G. Cho, I. H. Choi, and D. I. Lee, Conference Record of the 2006 IEEE International Symposium on Electrical Insulation (IEEE, Toronto, Canada, 2006) p. 118. [DOI: http://dx.doi.org/10.1109/ELINSL.2006.1665271]
  9. E. L. Brancato, IEEE Trans. Electr. Insul., EI-13, 308 (1978). [DOI: http://dx.doi.org/10.1109/TEI.1978.298079]
  10. N. A. Othman, M.A.M. Piah, Z. Adzis, H. Ahmad, N. A. Ahmad, H. Kamarden, and A. A. Suleiman, J. Electrostat., 72, 315 (2014). [DOI: https://doi.org/10.1016/j.elstat.2014.05.003]
  11. B. S. Reddy and S. Prasad D, IEEE Trans. Dielectr. Electr. Insul., 23, 359 (2016). [DOI: http://dx.doi.org/10.1109/TDEI.2015.005256]
  12. Arshad, A. Nekahi, S. G. McMeekin, and M. Farzaneh, Proc. IEEE 11th International Conference on the Properties and Applications of Dielectric Materials (ICPADM) (IEEE, Sydney, Australia, 2015). [DOI: http://dx.doi.org/10.1109/ICPADM.2015.7295346]
  13. J. K. Park, Workshop on Power Grid Interconnection in Northeast Asia (Hotel New Ohtani, Beijing, China. 2001).
  14. H. G. Cho, S. W. Han, K. H. Park, D. H. Han, D. I. Lee, I. H. Choi, and T. Y. Kim, Proc. the 7th international Conference on Properties and Applications of Dielectric Materials (IEEE, Nagoya, Japan, 2003) p. 415. [DOI: http://dx.doi.org/10.1109/ICPADM.2003.1218439]
  15. J. M. George, S. Prat, S. Tartier, and Z. Lodi, Symp. 18th International Symposium on High Voltage Engineering (Institute of High Voltage and Power Transmission, Seoul, Korea, 2013) p. 1154.
  16. S. Ilhan and A. Ozdemir, Proc. 7th International Conference on Electrical and Electronics Engineering (IEEE, Bursa, Turkey, 2007) p. 142.
  17. I. H. Choi, J. H. Choi, D. I. Lee, Y. G. Choi, H. G. Cho, S. W. Han, and Y. C. Park, J. Korean Inst. Electr. Electron. Mater. Eng., 18, 96 (2005). [DOI: http://dx.doi.org/10.4313/JKEM.2005.18.1.096]
  18. S. W. Han, H. G. Cho, K. H. Park, D. I. Lee, and I. H. Choi, J. Korean Inst. Electr. Electron. Mater. Eng., 16, 842 (2003).
  19. E. Akbari, M. Mirzaie, A. Rahimnejad, and M. B. Asadpoor, Int. J. Eng. Technol., 1, 407 (2012). [DOI: http://dx.doi.org/10.14419/ijet.v1i4.330]
  20. K. Morita, Y. Suzuki, and H. Nozak, IEEJ Trans. Power Energ., 117, 1529 (1997). [DOI: http://doi.org/10.1541/ieejpes1990.117.12_1529]
  21. S. W. Han, I. H. Choi, and D. I. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 9, 143 (2008). [DOI: https://doi.org/10.1109/EEIC.2007.4562601]
  22. N. Montoya, F. J. Serrano, M. M. Reventos, J. M. Amigo, and J. Alarcon, J. Eur. Ceram. Soc., 30, 839 (2010). [DOI: https://doi.org/10.1016/j.jeurceramsoc.2009.10.009]
  23. E. A. Cherney, A. C. Baker, J. Kuffel, Z. Lodi, A. Phillips, D. G. Powell, and G. A. Stewart, IEEE Trans. Power Del., 29, 275 (2014). [DOI: http://dx.doi.org/10.1109/TPWRD.2013.2288776]
  24. R. S. Gorur, Proc. 2011 Electrical Insulation Conference (EIC) (IEEE, Annapolis, MD, USA, 2011) p. 221. [DOI: http://dx.doi.org/10.1109/EIC.2011.5996150]