DOI QR코드

DOI QR Code

Analysis of Coefficiency According to Blade rpm Change in Tidal Current Power Generation System

조류발전 시스템 내 블레이드 회전수 변화에 따른 효율 특성 분석

  • Lee, Uk Jae (Department of Civil and Environmental Engineering, Wonkwang University) ;
  • Han, Seok Jong (Department of Mechanical Engineering, Wonkwang University) ;
  • Bak, Da In (Department of Mechanical Engineering, Wonkwang University) ;
  • Jeong, Shin Taek (Department of Civil and Environmental Engineering, Wonkwang University)
  • 이욱재 (원광대학교 토목환경공학과) ;
  • 한석종 (원광대학교 기계공학과) ;
  • 박다인 (원광대학교 기계공학과) ;
  • 정신택 (원광대학교 토목환경공학과)
  • Received : 2019.10.11
  • Accepted : 2019.10.25
  • Published : 2019.10.31

Abstract

The numerical simulation method was used to analyze the flow velocity change and mechanical coefficient characteristics of the blade in the shroud system that changes with the initial flow velocity and the blade rpm. In the analysis condition, the initial flow velocity was varied from 0.35 m/s to 1.0 m/s, and the blade rpm varied from 50 rpm to 300 rpm. Through this, the mechanical coefficient was estimated. The flow velocity changes tended to increase more than 1.8 times at the middle point compared to the inlet. When the flow velocity ratio was 0.75 m/s compared to the initial flow velocity of 0.5 m/s, the flow velocity ratio decreased. The mechanical coefficient using the torque of the blade also showed the highest coefficient at 0.5 m/s, and the trends were similar. On the other hand, the maximum coefficient was estimated to be about 20.88% in TSR 4.77 when the initial flow velocity was 0.5 m/s. The mechanical coefficient analysis of blades in this study is expected to provide the basic data for hydraulic model experimental.

초기 유속과 블레이드의 회전수에 따라 변화하는 쉬라우드 시스템 내 유속 변화와 블레이드의 효율 특성을 분석을 위해 수치해석 방법을 이용한 연구를 수행했다. 해석 조건으로 0.35 m/s에서 1.0 m/s까지 초기 유속 변화와 50 rpm부터 300 rpm까지 블레이드의 회전수를 변화시키며 기계적 효율을 추정했다. 유속 변화는 유입부 대비 중심부에서 모든 경우 약 1.8배 이상 증가하는 경향을 보였으며, 초기 유속 0.5 m/s 대비 0.75 m/s에서 유속 변화율이 감소했다. 또한 블레이드의 토크를 이용한 기계적 효율 역시 0.5 m/s의 경우 가장 높은 효율을 보였으며, 모든 경우 유사한 경향성을 보였다. 한편 최대 효율은 초기 유속 0.5 m/s인 경우 TSR 4.77에서 약 20.88%로 산정됐다. 본 연구에서 수행한 블레이드의 기계적 효율 분석은 수리모형실험에 필요한 기초적 자료를 제시할 수 있을 것으로 기대된다.

Keywords

References

  1. Alidadi, M. and Calisal, S. (2014). A numerical method for calculation of power output from ducted vertical axis hydro-current turbines. Computers & Fluids, 105, 76-81. https://doi.org/10.1016/j.compfluid.2014.09.009
  2. Atcheson, M., MacKinnon, P. and Elsaesser, B. (2015). A large scale model experimental study of a tidal turbine in uniform steady flow. Ocean Engineering, 110, 51-61. https://doi.org/10.1016/j.oceaneng.2015.09.052
  3. Borg, M.G., Xiao, Q., Allsop, S., Incecik, A. and Peyrard, C. (2018). Numerical Analysis of a Ducted High-Solidity Tidal Turbine. In 2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO), 1-5, IEEE.
  4. de Jesus Henriques, T.A., Tedds, S.C., Botsari, A., Najafian, G., Hedges, T.S., Sutcliffe, C.J., Owen, I. and Poole, R.J. (2014). The effects of wave-current interaction on the performance of a model horizontal axis tidal turbine. International Journal of Marine Energy, 8, 17-35. https://doi.org/10.1016/j.ijome.2014.10.002
  5. FLUENT User's Guide, FLUENT Inc.
  6. Han, S.J., Lee, U.J., Park, D.I., Lee, S.H., Jeong, S.T. and Lee, S.S. (2019). Experimental performance analysis using a compact scale model for shroud tidal current power generation system. Journal of Korean Society of Coastal and Ocean Engineers, 31(4), 221-228. https://doi.org/10.9765/KSCOE.2019.31.4.221
  7. Jeffcoate, P., Whittaker, T., Boake, C. and Elsaesser, B. (2016). Field tests of multiple 1/10 scale tidal turbines in steady flows. Renewable Energy, 87, 240-252. https://doi.org/10.1016/j.renene.2015.10.004
  8. Kim, J.W. and Lee, S.H. (2012). A study on seawater flow characteristics inside the shrouds used in tidal current generation systems for various geometric angles under constant tidal current velocity. Journal of Ocean Engineering and Technology, 24(2), 77-83.
  9. Lee, U.J., Han, S.J., Jeong, S.T. and Lee, S.H. (2019). Analysis of flow velocity change in blade installed shroud system for tidal current generation. Journal of Korean Society of Coastal and Ocean Engineers, 31(1), 9-16. https://doi.org/10.9765/KSCOE.2019.31.1.9
  10. Liu, H.W., Zhou, H.B., Lin, Y.G., Li, W. and Gu, H.G. (2016). Design and test of 1/5th scale horizontal axis tidal current turbine. China Ocean Engineering, 30(3), 407-420. https://doi.org/10.1007/s13344-016-0027-5
  11. Solidworks User' Manual, 2016, Dassault System.
  12. Tian, W., Mao, Z. and Ding, H. (2018). Design, test and numerical simulation of a low-speed horizontal axis hydrokinetic turbine. International Journal of Naval Architecture and Ocean Engineering, 10(6), 782-793. https://doi.org/10.1016/j.ijnaoe.2017.10.006
  13. Yang, C.J. and Hoang, T.G. (2016). Development trends of tidal current energy and its test bed. Vacuum Magazine, 3(2), 11-16. https://doi.org/10.5757/vacmac.3.2.11
  14. Yi, J.H., Oh, S.H., Park, J.S., Lee, K.S. and Lee, S.Y. (2013). Flowturbine interaction CFD analysis for performance evaluation of vertical axis tidal current turbines (II). Journal of Ocean Engineering and Technology, 27(3), 73-78. https://doi.org/10.5574/KSOE.2013.27.3.073