• Title/Summary/Keyword: Current Comparator

Search Result 133, Processing Time 0.037 seconds

교류전동기의 벡터제어를 위한 공간벡터에 기저한 전류 제어기

  • 이윤종;임남혁;민강기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.9
    • /
    • pp.753-763
    • /
    • 1990
  • This paper proposes a new current control strategy for current regulated VSI-PWM lnverter. The conventional hysteresis control method has good dynamic response, but the switching frequency in lower region are high because it does not optimise switching patterns. Proposed current control strategy can optimize switching patterns. As regulater, three level comparator are used, the output of comparator select appropriate inverter output voltage vectors via switching table stored in EPROM. The simulation and experimental results in comparison to conventional hysteresis strategy are presented and discussed.

  • PDF

CMI Tolerant Readout IC for Two-Electrode ECG Recording (공통-모드 간섭 (CMI)에 강인한 2-전극 기반 심전도 계측 회로)

  • Sanggyun Kang;Kyeongsik Nam;Hyoungho Ko
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.432-440
    • /
    • 2023
  • This study introduces an efficient readout circuit designed for two-electrode electrocardiogram (ECG) recording, characterized by its low-noise and low-power consumption attributes. Unlike its three-electrode counterpart, the two-electrode ECG is susceptible to common-mode interference (CMI), causing signal distortion. To counter this, the proposed circuit integrates a common-mode charge pump (CMCP) with a window comparator, allowing for a CMI tolerance of up to 20 VPP. The CMCP design prevents the activation of electrostatic discharge (ESD) diodes and becomes operational only when CMI surpasses the predetermined range set by the window comparator. This ensures power efficiency and minimizes intermodulation distortion (IMD) arising from switching noise. To maintain ECG signal accuracy, the circuit employs a chopper-stabilized instrumentation amplifier (IA) for low-noise attributes, and to achieve high input impedance, it incorporates a floating high-pass filter (HPF) and a current-feedback instrumentation amplifier (CFIA). This comprehensive design integrates various components, including a QRS peak detector and serial peripheral interface (SPI), into a single 0.18-㎛ CMOS chip occupying 0.54 mm2. Experimental evaluations showed a 0.59 µVRMS noise level within a 1-100 Hz bandwidth and a power draw of 23.83 µW at 1.8 V.

Balanced Comparator and Delta-Sigma Modulator with High-Tc Multilayer RSFQ Logic Circuits (고온초전도 다층박막 RSFQ 회로를 이용한 균형잡힌 비교기와 델타-시그마 모듈레이터)

  • Chong, Yon-Uk;Khim, Jeong-Gu;Ruck, B.;Dittmann, R.;Horstmann, C.;Engelhardt, A.;Wahl, G.;Oelze, B.;Sodtke, E.
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.48-53
    • /
    • 1999
  • We demonstrate small-scale high-T$_c$ superconductor RSFQ(Rapid Single Flux Quantum) circuits using multilayer bicrystal technology. An RSFQ balanced comparator is demonstrated with good current resolution, and its operating conditions are discussed in some detail. A single-loop delta-sigma modulator is realized adding a feedback loop to the comparator. The effect of the feedback is confirmed by dc measurement and simulation. A design of an RSFQ toggle flip-flop with the same multilayer bicrystal technology is suggested.

  • PDF

Design of 3V a Low-Power CMOS Analog-to-Digital Converter (3V 저전력 CMOS 아날로그-디지털 변환기 설계)

  • 조성익;최경진;신홍규
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.11
    • /
    • pp.10-17
    • /
    • 1999
  • In this paper, CMOS IADC(Current-mode Analog-to-Digital Converter) which consists of only CMOS transistors is proposed. Each stages is made up 1.5-bit bit cells composed of CSH(Current-mode Sample-and-Hold) and CCMP(Current Comparator). The differential CSH which designed to eliminate CFT(Clock Feedthrough), to meet at least 9-bit resolution, is placed at the front-end of each bit cells, and each stages of bit cell ADSC (Analog-to-Digital Subconverter) is made up two latch CCMPs. With the HYUNDAI TEX>$0.65\mu\textrm{m}$ CMOS parameter, the ACAD simulation results show that the proposed IADC can be operated with 47 dB of SINAD(Signal to Noise- Plus-Distortion), 50dB(8-bit) of SNR(Signal-to-Noise) and 37.7 mW of power consumption for input signal of 100 KHz at 20 Ms/s.

  • PDF

A Study on the Design of a Beta Ray Sensor Reducing Digital Switching Noise (디지털 스위칭 노이즈를 감소시킨 베타선 센서 설계)

  • Kim, Young-Hee;Jin, Hong-Zhou;Cha, Jin-Sol;Hwang, Chang-Yoon;Lee, Dong-Hyeon;Salman, R.M.;Park, Kyung-Hwan;Kim, Jong-Bum;Ha, Pan-Bong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.5
    • /
    • pp.403-411
    • /
    • 2020
  • Since the analog circuit of the beta ray sensor circuit for the true random number generator and the power and ground line used in the comparator circuit are shared with each other, the power generated by the digital switching of the comparator circuit and the voltage drop at the ground line was the cause of the decreasein the output signal voltage drop at the analog circuit including CSA (Charge Sensitive Amplifier). Therefore, in this paper, the output signal voltage of the analog circuit including the CSAcircuit is reduced by separating the power and ground line used in the comparator circuit, which is the source of digital switching noise, from the power and ground line of the analog circuit. In addition, in the voltage-to-voltage converter circuit that converts VREF (=1.195V) voltage to VREF_VCOM and VREF_VTHR voltage, there was a problem that the VREF_VCOM and VREF_VTHR voltages decrease because the driving current flowing through each current mirror varies due to channel length modulation effect at a high voltage VDD of 5.5V when the drain voltage of the PMOS current mirror is different when driving the IREF through the PMOS current mirror. Therefore, in this paper, since the PMOS diode is added to the PMOS current mirror of the voltage-to-voltage converter circuit, the voltages of VREF_VCOM and VREF_VTHR do not go down at a high voltage of 5.5V.

An Automatic Power Control Circuit suitable for High Speed Burst-mode optical transmitters (고속 버스트 모드 광 송신기에 적합한 자동 전력 제어 회로)

  • Ki, Hyeon-Cheol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.11 s.353
    • /
    • pp.98-104
    • /
    • 2006
  • The conventional burst-mode APC(Automatic Power Control) circuit had an effective structure that was suitable for a low power consumption and a monolithic chip. However, as data rate was increased, it caused errors due to the effect of the zero density. In this paper, we invented a new structured peak-comparator which could compensate the unbalance of the injected currents using double gated MOS and MOS diode. And we proposed a new burst-mode APC adopting it. The new peak-comparator in the proposed APC was very robust to zero density variations maintaining the correct decision point of the current comparison at high data rate. It was also suitable for a low power consumption and a monolithic chip due to lack of large capacitors.

Static Var Compensator Using Current Source PWM Converter (전류형 PWN 콘버어터의 희한 정지형 무효전력 보상장치에 관한연구)

  • 김철우;권순재;김광태
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.11
    • /
    • pp.1183-1190
    • /
    • 1990
  • In this paper, instantaneous reactive power compensation algorithm is proposed and analyzed. The static Var generator developed in this paper is the current source PWM converter using hysteresis comparator method, which compensates the reactive power by detecting each instantaneous phase voltage and line current, independently. Some aspects on the static Var compensator-such as inductance, capacitance, hysteresis width, and switching frequency, etc.-are discussed. The dynamic performances are examined through digital simulation and experimental test.

  • PDF

New Switching signal Pattern in AC Chopper (교류초퍼에서 새로운 스위칭 신호패턴)

  • Jang, Do-Hyun;Yeon, Jae-Eul
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1267-1269
    • /
    • 2000
  • New switching signal pattern for four switches is proposed to prevent the shortage of PWM ac choppers. In the proposed technique, four signals to four power switches are generated without current transformer, while the conventional technique requires sensing the polarity of input voltage by voltage comparator and checking the direction of input current by the current transformer. The signal circuit built by the proposed technique is simple, and reduces also the switching loss.

  • PDF

A New Architecture of CMOS Current-Mode Analog-to-Digital Converter Using a 1.5-Bit Bit Cell (1.5-비트 비트 셀을 이용한 새로운 구조의 CMOS 전류모드 아날로그-디지털 변환기)

  • 최경진;이해길;나유찬;신홍규
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.53-60
    • /
    • 1999
  • In this paper, it is proposed to a new architecture of CMOS IADC(Current-Mode Analog-to-Digital Converter) using 1.5-bit bit cell of which consists a CSH(Current-Mode Sample-and-Hold) and CCMP(Current-Mode Comparator). In order to guarantee the entire linearity of IADC, the CSH is designed to cancel CFT(Clock Feedthrough) whose resolution is to meet at the least 9-bit which is placed in the front-end of each bit cell. In the proposed IADC, digital correction logic is simplified and power consumption is reduced because bit cell of each stage needs two latch CCMP. Also, it is available for a mixed-mode integrated circuit because all of block is designed with only MOS transistor. With the HYUNDAI 0.8㎛ CMOS parameter, the HSPICE simulation results show that the proposed IADC can be operated at 20Ms/s with SNR of 43 dB with which is satisfied 7-bit resolution for input signal at 100 ㎑, and its power consumption is 27㎽.

  • PDF

A Design of Non-Coherent CMOS IR-UWB Receiver (비동기식 CMOS IR-UWB 수신기의 설계 및 제작)

  • Ha, Min-Cheol;Park, Young-Jin;Eo, Yun-Seong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.9
    • /
    • pp.1045-1050
    • /
    • 2008
  • In this paper presents a CMOS RF receiver for IR-UWB wireless communications is presented. The impulse radio based UWB receiver adopts the non-coherent demodulation that simplifies the receiver architecture and reduces power consumption. The IR-UWB receiver consists of LNA, envelop detector, VGA, and comparator and the receiver including envelope detector, VGA, and comparator is fabricated on a single chip using $0.18{\mu}m$ CMOS technology. The measured sensitivity of IR-UWB receiver is down to -70 dBm and the BER $10^{-3}$, respectively at data rate 1 Mbps. The current consumption of IR-UWB receiver except external LNA is 5 mA at 1.8 V.