• Title/Summary/Keyword: Cure agent

Search Result 153, Processing Time 0.023 seconds

Cure Characteristics, Mechanical Properties and Abrasion Resistance of Silica Filled Natural Rubber Vulcanizate

  • Lee, Hae Gil;Park, Chan Young
    • Elastomers and Composites
    • /
    • v.50 no.3
    • /
    • pp.159-166
    • /
    • 2015
  • Silica which is used for reinforcing filler in tire industry is widely known as eco-friendly material exerting $CO_2$ reduction effect through decrease of rolling resistance and improvement of wet grip. Generally silica is classified as a highly polar filler because it contains a large number of silanol (Si-OH) group on its surface. And also silica gives a lower reinforcing effect than carbon black due to its poorer rubber-filler interaction. Therefore silica is treated with silane coupling agent or activator, then following the conventional rubber blend method, vulcanized sheets were prepared using a hot press, and cure characteristics, mechanical properties and abrasion resistance of the test specimens were investigated. It was found that with an increase in the silane coupling agent content the tensile strength, 300% modulus and abrasion resistance increased while Mooney viscosity decreased and crosslink density slightly increased with an increase of activator.

Cure Reactions of Epoxy/Anhydride/(Polyamide Copolymer) Blends

  • Youngson Choe;Kim, Wonho
    • Macromolecular Research
    • /
    • v.10 no.5
    • /
    • pp.259-265
    • /
    • 2002
  • The cure kinetics of blends of epoxy (DGEBA, diglycidyl ether of bisphenol A)/anhydride resin with polyamide copolymer, poly(dimmer acid-co-alkyl polyamine), were studied using differential scanning calorimetry (DSC) under isothermal condition. On increasing the amount of polyamide copolymer in the blends, the reaction rate was increased and the final cure conversion was decreased. Lower values of final cure conversions in the epoxy/(polyamide copolymer) blends indicate that polyamide hinders the cure reaction between the epoxy and the curing agent. The value of the reaction order, m, for the initial autocatalytic reaction was not affected by blending polyamide copolymer with epoxy resin, and the value was approximately 1.3, whereas the reaction order, n, for the general n-th order of reaction was increased by increasing the amount of polyamide copolymer in the blends, and the value increased from 1.6 to 4.0. A diffusion-controlled reaction was observed as the cure conversion increased and the rate equation was successfully analyzed by incorporating the diffusion control term for the epoxy/anhydride/(polyamide copolymer) blends. Complete miscibility was observed in the uncured blends of epoxy/(polyamide copolymer) up to 120 $^{\circ}C$, but phase separations occurred in the early stages of the curing process at higher temperatures than 120 "C. During the curing process, the cure reaction involving the functional group in polyamide copolymer was detected on a DSC thermogram.gram.

Effects of Co-agent Type and Content on Curing Characteristics and Mechanical Properties of HNBR Composite

  • Lee, Young Seok;Ha, KiRyong
    • Elastomers and Composites
    • /
    • v.55 no.2
    • /
    • pp.95-102
    • /
    • 2020
  • Currently, peroxide cure is a widely used cure system for rubber materials. To improve its effectivity, co-agents are used to enhance the peroxide efficiency and mechanical properties of rubber materials. Co-agents are multifunctional organic compounds that are highly reactive towards free radicals. These co-agents provide higher cross-link densities for a given peroxide concentration and improve the mechanical properties of peroxide-cured rubber composites. In this study, trimethylolpropane trimethacrylate (TMPTMA) and high vinyl 1,2-polybutadiene (HVPBD) were used as co-agents. In order to obtain a concentration that achieves a favorable balance between mechanical properties and co-agent concentration, this research investigated the effects of co-agent content on the curing characteristics, chemical structures, and mechanical properties of HNBR composites. Additionally, the heat aging properties and compression sets of HNBR composites were investigated. Based on the results, we found that the HNBR composites with TMPTMA co-agents exhibited higher Shore A hardness and 10% modulus and better heat aging resistance and compression set than that of the HVPBD co-agent. The heat aging resistance and compression set deteriorated with increasing HVPBD content.

Cure Kinetics of amine-cured tetraglycidyl-4,4'-diaminodiphenylmethane epoxy blends with a new polyetherimide (반응성 열가소성 수지로 개질된 TGDDM/DDS 시스템의 Cure Kinetics)

  • Hwang Seungchul;Lee JungHoon;Kim Donghyon;Kim Woho;Kim Minyoung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.214-217
    • /
    • 2004
  • The cure kinetics of blends of epoxy(tetraglycidyl-4,4'-diaminodiphenylmethane ; TGDDM)/curing agent(diaminodiphenyl sulfone ; DDS) resin with amine terminated polyetherimide-CTBN-amine terminated polyetherimide triblock copolymer(ABA) were studied using differential scanning calorimetry under isothermal conditions to determine the reaction parameters such as activation energy and reaction constants. By increasing the amount of ABA in the blends, the final cure conversion was decreased. Lower values of the final cure conversions in the epoxy/ABA blends indicated that ABA hinders the cure reaction between the epoxy and curing agents. 1be value of the reaction order, m, for the initial autocatlytic reaction was not affected by blending ABA with epoxy resin, and the value was approximately 1.0. The value of n for the nth order component in the autocatalytic analysis was increased by increasing the amount of ABA in the blends, and the value increased from 2.0-3.4. A diffusion controlled reaction was observed as the cure conversion increased and the rate equation was successfully analyzed by incorporating the diffusion control term for the epoxy/DDS/ABA blends.

  • PDF

Cure Kinetics and Dynamic Mechanical Properties of an Epoxy/Polyoxypropylene Diamine System (에폭시/폴리옥시프로필렌 디아민계의 경화 반응속도 및 동역학 특성 분석)

  • Huang, Guang-Chun;Lee, Jong-Keun
    • Polymer(Korea)
    • /
    • v.35 no.3
    • /
    • pp.196-202
    • /
    • 2011
  • The cure kinetics of a bisphenol A epoxy resin and polyoxypropylene diamine curing agent system are investigated in both dynamic and isothermal conditions by differential scanning calorimetry (DSC). In dynamic experiments, the shift of exothermic peaks obtained at different heating rates is used to obtain activation energy of overall cure reaction based on the methods of Ozawa and Kissinger. Isothermal DSC data at different temperatures are fitted to an autocatalytic Kamal kinetic model. The kinetic model is in a good agreement with the experimental data in the initial stage of cure. A diffusion effect is incorporated to describe the later stage of cure, predicting the cure kinetics over the whole range of curing process. Also, dynamic mechanical analysis is performed to evaluate the storage modulus and average molecular weight between crosslinkages.

STUDY OF THE TENSILE BOND STRENGTH OF COMPOSITES RESINS APPLIED TO ACID-ECHED ENAMEL (산처리(酸處理)된 Enamel표면(表面)에 대(對)한 Composite resin의 인장접착강도(引張接着强度)에 관(關)한 연구(硏究))

  • Lee, Young-Kun;Min, Byung-Soon;Choi, Ho-Young;Park, Sung-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.12 no.2
    • /
    • pp.45-53
    • /
    • 1987
  • The purpose of this study was to evaluate the tensile bond strength between composite resin and the human enamel. Three composite resin systems, two chemical (Clearfil Posterior, and Clearfil Posterior-3) and one light cure (Photo Clearfil-A), used with and without an intermediate resin (clearfil bonding agent), were evaluated under different amounts of load (10g, 200g and 200g for a moment) for in vitro tensile bond strength to acid-eched human enamel. Clinically intact buccal or lingual surfaces of 144 freshly extracted human permanent molars, embedded in acrylic were flattened with No #600 carborundum discs. Samples were randomly assigned to the different materials and treatments using a table of random numbers. Eight samples were thus prepared for each group(Table 2) these surfaces were etched with an acid etchant (Kurarey Co. Japan) in a mode of etching for 30 seconds, washing for 15 seconds, and drying for 30-seconds. During the polymerization of composite resin on the acid-etched enamel surfaces with and without bonding agent 10-gram, 200 gram and temporary 200 gram of load were applied. The specimens were stored in 50% relation humidity at $37^{\circ}C$ for 24 hours before testing. An universal Testing machine (Intesco model No. 2010, Tokyo, Japan) was used to apply tensile loads in the vertical directed (fig 5), and the force required for separation was recorded with a cross head speed of 0.25 mm/min and 20 kg in full scale. The results were as follow: 1. The tensile bond strength was much greater in applying a bonding agent than in not doing that. 2. The tensile bond strength of chemical cure composite resin was higher than that of light cure composite resin with applying on bonding agent on the acid-etched enamel. 3. In case of not applying a bonding agents on the acid-etching enamel, the highest tensile bond strength under 200 gram of load was measured in light cure composite resin. 4. The tensile bond strength under 200-gram of load has no relation with applying the bonding agent. 5. Under the load of 10-gram, There was significant difference in tensile bond strength as applying the bonding agent.

  • PDF

Fast-Curing of Phenol·Formaldehyde Resin Adhesives for Plywood (합판용 페놀수지 접착제의 속경화)

  • Roh, Jeang-Kwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.33-39
    • /
    • 1995
  • To accelerate the cure of phenolic resin adhesives for plywood, the complexation with melamine resin and the addition of cure-accelerating agents were discussed. The hot-pressing temperature and time of phenol resin could be decreased by complexation with melamine resin. but the wet glue-joints strength of phenol melamine resin was lower than that of ordinary phenol resin in case of plywood using spruce veneer at core layer. Among the tested cure-accelerating agents. the sodium carbonate showed the greatest effect on shortening gelation time of phenolic resin. In addition, in the manufacturing scale test, the hot-pressing time of phenol resin with the addition of 5 parts sodium carbonate could be shortened about 20% compared with ordinary phenol resin which had same glue-joints properties.

  • PDF

In Situ Detection of the Onset of Phase Separation and Gelation in Epoxy/Anhydride/Thermoplastic Blends

  • Choe, Young-Son;Kim, Min-Young;Kim, Won-Ho
    • Macromolecular Research
    • /
    • v.11 no.4
    • /
    • pp.267-272
    • /
    • 2003
  • The isothermal cure reactions of blends of epoxy (DGEBA, diglycidyl ether of bisphenol A)/anhydride resin with polyamide copolymer (poly(dimmer acid-co-alkyl polyamine)) or PEI were studied using differential scanning calorimetry (DSC). Rheological measurements have been made to investigate the viscosity and mechanical relaxation behavior of the blends. The reaction rate and the final cure conversion were decreased with increasing the amount of thermoplastics in the blends. Lower values of final cure conversions in the epoxy/thermoplastic blends indicate that thermoplastics hinder the cure reaction between the epoxy and the curing agent. Complete miscibility was observed in the uncured blends of epoxy/thermoplastics up to $120^{\circ}C$ but phase separations occurred in the early stages of the curing process at higher temperatures than $120^{\circ}C$. According to the rheological measurement results, a rise of G' and G" at the onset of phase separation is seen. A rise of G' and G" is not observed for neat epoxy system since no phase separation is seen during cure reaction. At the onset of phase separation the rheological behavior was influenced by the amount of thermoplastics in the epoxy/thermoplastic blends, and the onset of phase separation can be detected by rheological measurements.

Effect of Various Cross-linking Types on the Physical Properties in Carbon Black-Filled Natural Rubber Compound (천연고무 배합물에서 가교형태 변화가 물성에 미치는 영향)

  • Park, Byung-Ho;Jung, Il-Gouen;Park, Sung-Soo
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.63-70
    • /
    • 2001
  • The objective of this study was to investigate the effect of cure type on the processing and physical properties under conditions of similar stress-strain properties. On the carbon black filled natural rubber(NR) based compound, the induction time decreased, but the cure rate became fast with increasing loading of sulfur donor agent. Tensile strength was little affected on the curing type. However, elongation generally decreased with increasing accelerator. Effect of cure type on the blow-out properties was followings: CV

  • PDF

Cure Behavior and Chemorheology of Low Temperature Cure Epoxy Matrix Resin (저온 경화형 에폭시 매트릭스 수지의 경화거동 및 화학유변학에 대한 연구)

  • Na, Hyo Yeol;Yeom, Hyo Yeol;Yoon, Byung Chul;Lee, Seong Jae
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.171-179
    • /
    • 2014
  • Low temperature cure prepregs are being developed for use in the preparation of large-structured fiber-reinforced polymer (FRP) composites with good performance. Cure behavior and chemorheology of low temperature cure epoxy resin system, based on epoxy resin, curing agent, and accelerators, were investigated to provide a matrix resin suitable for the prepreg preparation. Characteristics of cure reaction were studied in both dynamic and isothermal conditions by means of differential scanning calorimetry and rheometry. The low temperature cure epoxy resin system suggested in this study as a matrix resin was curable at $80^{\circ}C$ for 3 h, and showed the gel times of 120 and 20 min at 80 and $90^{\circ}C$, respectively. Thermal and mechanical properties of the cured sample were almost the same as high temperature cure counterparts.