In Situ Detection of the Onset of Phase Separation and Gelation in Epoxy/Anhydride/Thermoplastic Blends

  • Choe, Young-Son (Department of Chemical Engineering, Pusan National University) ;
  • Kim, Min-Young (Department of Chemical Engineering, Pusan National University) ;
  • Kim, Won-Ho (Department of Chemical Engineering, Pusan National University)
  • Published : 2003.08.31

Abstract

The isothermal cure reactions of blends of epoxy (DGEBA, diglycidyl ether of bisphenol A)/anhydride resin with polyamide copolymer (poly(dimmer acid-co-alkyl polyamine)) or PEI were studied using differential scanning calorimetry (DSC). Rheological measurements have been made to investigate the viscosity and mechanical relaxation behavior of the blends. The reaction rate and the final cure conversion were decreased with increasing the amount of thermoplastics in the blends. Lower values of final cure conversions in the epoxy/thermoplastic blends indicate that thermoplastics hinder the cure reaction between the epoxy and the curing agent. Complete miscibility was observed in the uncured blends of epoxy/thermoplastics up to $120^{\circ}C$ but phase separations occurred in the early stages of the curing process at higher temperatures than $120^{\circ}C$. According to the rheological measurement results, a rise of G' and G" at the onset of phase separation is seen. A rise of G' and G" is not observed for neat epoxy system since no phase separation is seen during cure reaction. At the onset of phase separation the rheological behavior was influenced by the amount of thermoplastics in the epoxy/thermoplastic blends, and the onset of phase separation can be detected by rheological measurements.

Keywords

References

  1. H. Bucknall and A. H. Gilbert, Polymer, 30, 213 (1989)
  2. D. J. Hourston, J. M. Lane. and N. A. MaeBeath, Polymer Intl., 26, 17 (1991)
  3. I. Alig and W. Jenniger, J. Polym. Sci., Polytn. Phys., 36, 246 (1998)
  4. C. W. Wise, W. D. Cook, and A. A. Goodwin, Polymer, 41, 4625 (2000)
  5. D. Chen. J. P. Pascault, R. J. Bertsch, R. S. Drake, and A. R. Siebert, J. Appl. Polym. Sci., 51, 1959 (1994)
  6. P. A. Oyanguren, C. C. Riccardi, R. J. J. Williams, and I. Mondragom, Polymer, 36, 1349 (1998)
  7. C. S. Chean and M. W. Eamor, Polymer, 36, 28838 (1995)
  8. A. Bonnet. J. P. Pascault, H. Sautereau, and Y. Camberlin, Macromolecules, 32, 8517 (1999)
  9. A. Bonnet, J. P. Pascault, H. Sautereau, and Y. Camberlin, Macromolecules, 32, 8524 (1999)
  10. Z. K. Zhong and Q. P. Guo, Polymer, 39, 517 (1998) https://doi.org/10.1016/S0032-3861(97)00309-1
  11. T. Agag and T. Takeichi, Polymer, 40, 6557 (1999)
  12. R. J. Varley, J. H. Hodgkin, D. G. Hawthorne, G. P. Simon, and D. McCulloch, Polymer, 41, 3425 (2000)
  13. K. Mimura, H. Ito, and H. Fujioka, Polymer, 41, 4451 (2000)
  14. G. Rajagopalan, J. W. Gillespie, and S. H. McKnight, Proceedings of the ANTEC 96, 1, 1225 (1996)
  15. E. Girard-Reydet, H. Sautereau, and J. P. Pascault, Polymer, 40, 1677 (1999)
  16. M. E. Rayn and A. Dutta, Polymer, 20, 203 (1979)
  17. K. Horie, H. Hiura, M. Sawada, I. Mita, and H. Kambe, J. Polym. Sci., 32, 3761 (1986)
  18. S. Poncet, G. Boiteux, J. P. Pascault, H. Sautereau, G. Seytre, J. Rogozinski, and D. Kranbuehl, Polymer, 40, 6811 (1999)
  19. K. C. Lee, S. E. Lee, and B. K. Song, Macromol. Res., 10, 135 (2002)
  20. L. Barral, J. Cano, J. Lopez, I. Lopez-Bueno, P. Nogueira, M. J. Abad, and C. Ramirez, Polymer, 41, 2657 (2000)
  21. J. K. Lee, Y. Choi, and J. R. Lee, Macromol. Res., 10, 34 (2002)
  22. K. S. Ryu, S. H. Chang, and S. K. Kwon, Macromol. Res., 10, 40 (2002)
  23. A. J. MacKinnon, S. D. Jenkins, P. T. MacGrail, and R. A. Pethrick, Macromolecules, 25, 3492 (1992)
  24. A. J. MacKinnon, S. D. Jenkins, P. T. MacGrail, and R. A. Pethrick, Polymer, 34, 3252 (1993)
  25. G. Banhegyi, Colloid Polym. Sci., 264, 1030 (1986)