Browse > Article
http://dx.doi.org/10.7317/pk.2014.38.2.171

Cure Behavior and Chemorheology of Low Temperature Cure Epoxy Matrix Resin  

Na, Hyo Yeol (Department of Polymer Engineering, The University of Suwon)
Yeom, Hyo Yeol (Department of Polymer Engineering, The University of Suwon)
Yoon, Byung Chul (Muhan Composite Co. LTD.)
Lee, Seong Jae (Department of Polymer Engineering, The University of Suwon)
Publication Information
Polymer(Korea) / v.38, no.2, 2014 , pp. 171-179 More about this Journal
Abstract
Low temperature cure prepregs are being developed for use in the preparation of large-structured fiber-reinforced polymer (FRP) composites with good performance. Cure behavior and chemorheology of low temperature cure epoxy resin system, based on epoxy resin, curing agent, and accelerators, were investigated to provide a matrix resin suitable for the prepreg preparation. Characteristics of cure reaction were studied in both dynamic and isothermal conditions by means of differential scanning calorimetry and rheometry. The low temperature cure epoxy resin system suggested in this study as a matrix resin was curable at $80^{\circ}C$ for 3 h, and showed the gel times of 120 and 20 min at 80 and $90^{\circ}C$, respectively. Thermal and mechanical properties of the cured sample were almost the same as high temperature cure counterparts.
Keywords
epoxy matrix resin; low temperature cure; cure behavior; differential scanning calorimetry; chemorheology;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M. Melnykowycz, X. Kommann, C. Huber, M. Barbezat, and A. J. Brunner, Smart Mater. Struct., 15, 204 (2006).   DOI   ScienceOn
2 B. Ellis, Chemistry and Technology of Epoxy Resins, Chapman & Hall, London, 1993.
3 J. Wan, B.-G. Li, H. Fan, Z.-Y. Bu, and C.-J. Xu, Thermochim. Acta, 511, 51 (2010).   DOI
4 Y. Nishimoto, European Patent 0,970,980 (2005).
5 P. Brondsted, H. Lilholt, and A. Lystrup, Annu. Rev. Mater. Res., 35, 505 (2006).
6 S. Sprenger, J. Appl. Polym. Sci., 130, 1421 (2013).   DOI
7 P. Ren, G. Liang, and Z. Zhang, Polym. Compos., 27, 402 (2006).   DOI
8 S. Ganguli, D. Dean, K. Jordan, G. Price, and R. Vaia, Polymer, 44, 1315 (2003).   DOI   ScienceOn
9 W. Stark, Polym. Test., 32, 231 (2013).   DOI
10 S. Honda, R. Sawaoka, and K. Nakahara, U.S. Patent 8,021,752 (2011).
11 N. Poisson, A. Maazouz, H. Sautereau, M. Taha, and X. Gambert, J. Appl. Polym. Sci., 69, 2487 (1998).   DOI
12 A. Pfitzmann, A. Fischer, K. Fryauf, and M. Fedtke, Polym. Bull., 27, 557 (1992).   DOI
13 M. D. Gilbert and N. S. Schneider, Macromolecules, 24, 360 (1991).   DOI
14 T. G. Mezger, The Rheology Handbook, 2nd ed., Vincentz, Hannover, 2009.
15 C. Michon, G. Cuvelier, and B. Launay, Rheol. Acta, 32, 94 (1993).   DOI
16 H. E. Kissinger, Anal. Chem., 29, 1702 (1957).   DOI
17 R. E. Camargo, V. M. Gonzalez, and C. W. Macosko, Rubber Chem. Tech., 56, 774 (1983).   DOI   ScienceOn
18 S. Y. Eom, S. B. Seo, and K. Y. Lee, Polymer(Korea), 37, 240 (2013).
19 T. Guthner and B. Hammer, J. Appl. Polym. Sci., 50, 1453 (1993).   DOI
20 C. Williams, J. Summerscales, and S. Grove, Composites Part A, 27, 517 (1996).   DOI
21 N. Amdouni, H. Sautereau, J.-F. Gerard, and J.-P. Pascault, Polymer, 31, 1245 (1990).   DOI