• Title/Summary/Keyword: Cumulative hazard function

Search Result 30, Processing Time 0.02 seconds

Bezier curve smoothing of cumulative hazard function estimators

  • Cha, Yongseb;Kim, Choongrak
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.3
    • /
    • pp.189-201
    • /
    • 2016
  • In survival analysis, the Nelson-Aalen estimator and Peterson estimator are often used to estimate a cumulative hazard function in randomly right censored data. In this paper, we suggested the smoothing version of the cumulative hazard function estimators using a Bezier curve. We compare them with the existing estimators including a kernel smooth version of the Nelson-Aalen estimator and the Peterson estimator in the sense of mean integrated square error to show through numerical studies that the proposed estimators are better than existing ones. Further, we applied our method to the Cox regression where covariates are used as predictors and suggested a survival function estimation at a given covariate.

On the comparison of cumulative hazard functions

  • Park, Sangun;Ha, Seung Ah
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.6
    • /
    • pp.623-633
    • /
    • 2019
  • This paper proposes two distance measures between two cumulative hazard functions that can be obtained by comparing their difference and ratio, respectively. Then we estimate the measures and present goodness of t test statistics. Since the proposed test statistics are expressed in terms of the cumulative hazard functions, we can easily give more weights on earlier (or later) departures in cumulative hazards if we like to place an emphasis on earlier (or later) departures. We also show that these test statistics present comparable performances with other well-known test statistics based on the empirical distribution function for an exponential null distribution. The proposed test statistic is an omnibus test which is applicable to other lots of distributions than an exponential distribution.

A Study on the Decision of an Optimal Maintenance Period for Ship's Machinery Items using the Cumulative Hazard Rate Function for Weibull Distribution (Weibull형 고장분포를 갖는 선박용 부품의 최적 보전시기의 결정수법에 관한 연구)

  • 유희한
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.90-96
    • /
    • 2000
  • The technology of preventive maintenance and corrective maintenance is widely applied to ships in order to maintain the good voyageable condition. One of the most important fields of marine engineering is to seek the maximum availability and to solve the stochastic maintenance problem such that the cost for corrective maintenance is minimized. Accordingly, for the purpose of making the most suitable maintenance schedule which minimizes the expected cost function, this paper suggests the method to grasp the failure characteristics by the ship's maintenance data that are collected from the past. And, suggests the method to estimate the optimal maintenance interval by using the dynamic programming and the cumulative hazard rate function attained from the maintenance data.

  • PDF

A Test Procedure for Checking the Proportionality Between Hazard Functions

  • Lee, Seong-Won;Kim, Ju-Seong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.3
    • /
    • pp.561-570
    • /
    • 2003
  • We propose a nonparametric test procedure for checking the proportionality assumption between hazard functions using a functional equation. Because of the involvement of censoring distribution function, we consider the large sample case only and obtain the asymptotic normality of the proposeed test statistic. Then we discuss the rationale of the use of the functional equation, give some examples and compare the performances with Andersen's procedure by computing powers through simulations.

  • PDF

Regression analysis of interval censored competing risk data using a pseudo-value approach

  • Kim, Sooyeon;Kim, Yang-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.6
    • /
    • pp.555-562
    • /
    • 2016
  • Interval censored data often occur in an observational study where the subject is followed periodically. Instead of observing an exact failure time, two inspection times that include it are available. There are several methods to analyze interval censored failure time data (Sun, 2006). However, in the presence of competing risks, few methods have been suggested to estimate covariate effect on interval censored competing risk data. A sub-distribution hazard model is a commonly used regression model because it has one-to-one correspondence with a cumulative incidence function. Alternatively, Klein and Andersen (2005) proposed a pseudo-value approach that directly uses the cumulative incidence function. In this paper, we consider an extension of the pseudo-value approach into the interval censored data to estimate regression coefficients. The pseudo-values generated from the estimated cumulative incidence function then become response variables in a generalized estimating equation. Simulation studies show that the suggested method performs well in several situations and an HIV-AIDS cohort study is analyzed as a real data example.

BIVARIATE DYNAMIC CUMULATIVE RESIDUAL TSALLIS ENTROPY

  • SATI, MADAN MOHAN;SINGH, HARINDER
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.1_2
    • /
    • pp.45-58
    • /
    • 2017
  • Recently, Sati and Gupta (2015) proposed two measures of uncertainty based on non-extensive entropy, called the dynamic cumulative residual Tsallis entropy (DCRTE) and the empirical cumulative Tsallis entropy. In the present paper, we extend the definition of DCRTE into the bivariate setup and study its properties in the context of reliability theory. We also define a new class of life distributions based on bivariate DCRTE.

Performance Comparison of Cumulative Incidence Estimators in the Presence of Competing Risks (경쟁위험 하에서의 누적발생함수 추정량 성능 비교)

  • Kim, Dong-Uk;Ahn, Chi-Kyung
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.2
    • /
    • pp.357-371
    • /
    • 2007
  • For the time-to-failure data with competing risks, cumulative incidence functions (CIFs) are commonly estimated using nonparametric methods. If the cases of events due to the cause of primary interest are infrequent relative to other cause of failure, nonparametric methods may result in rather imprecise estimates for CIF. In such cases, Bryant et al. (2004) suggested to model the cause-specific hazard of primary interest parametrically, while accounting for the other modes of failure using nonparametric estimator. We represented the semiparametric cumulative incidence estimator and extended to the model of Weibull and log-normal distribution. We also conducted simulations to access the performance of the semiparametric cumulative incidence estimators and to investigate the impact of model misspecification in log-normal cause-specific hazard model.

Comparison of Change-point Estimators in Hazard Rate Models

  • Kim, Jaehee
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.3
    • /
    • pp.753-763
    • /
    • 2002
  • When there is one change-point in the hazard rate model, a change-point estimator with the partial score process is suggested and compared with the previously developed estimators. The limiting distribution of the partial score process we used is a function of the Brownian bridge. Simulation study gives the comparison of change-point estimators.

A new flexible Weibull distribution

  • Park, Sangun;Park, Jihwan;Choi, Youngsik
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.5
    • /
    • pp.399-409
    • /
    • 2016
  • Many of studies have suggested the modifications on Weibull distribution to model the non-monotone hazards. In this paper, we combine two cumulative hazard functions and propose a new modified Weibull distribution function. The newly suggested distribution will be named as a new flexible Weibull distribution. Corresponding hazard function of the proposed distribution shows flexible (monotone or non-monotone) shapes. We study the characteristics of the proposed distribution that includes ageing behavior, moment, and order statistic. We also discuss an estimation method for its parameters. The performance of the proposed distribution is compared with existing modified Weibull distributions using various types of hazard functions. We also use real data example to illustrate the efficiency of the proposed distribution.

The Exponentiated Weibull-Geometric Distribution: Properties and Estimations

  • Chung, Younshik;Kang, Yongbeen
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.2
    • /
    • pp.147-160
    • /
    • 2014
  • In this paper, we introduce the exponentiated Weibull-geometric (EWG) distribution which generalizes two-parameter exponentiated Weibull (EW) distribution introduced by Mudholkar et al. (1995). This proposed distribution is obtained by compounding the exponentiated Weibull with geometric distribution. We derive its cumulative distribution function (CDF), hazard function and the density of the order statistics and calculate expressions for its moments and the moments of the order statistics. The hazard function of the EWG distribution can be decreasing, increasing or bathtub-shaped among others. Also, we give expressions for the Renyi and Shannon entropies. The maximum likelihood estimation is obtained by using EM-algorithm (Dempster et al., 1977; McLachlan and Krishnan, 1997). We can obtain the Bayesian estimation by using Gibbs sampler with Metropolis-Hastings algorithm. Also, we give application with real data set to show the flexibility of the EWG distribution. Finally, summary and discussion are mentioned.