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Abstract
In survival analysis, the Nelson-Aalen estimator and Peterson estimator are often used to estimate a cumu-

lative hazard function in randomly right censored data. In this paper, we suggested the smoothing version of
the cumulative hazard function estimators using a Bezier curve. We compare them with the existing estimators
including a kernel smooth version of the Nelson-Aalen estimator and the Peterson estimator in the sense of mean
integrated square error to show through numerical studies that the proposed estimators are better than existing
ones. Further, we applied our method to the Cox regression where covariates are used as predictors and suggested
a survival function estimation at a given covariate.

Keywords: Bezier curve, Bezier points, Cox regression, cumulative hazard function estimator,
kernel type smoothing, right censored data

1. Introduction

Estimating a survival function in randomly right censored data is an important issue in survival anal-
ysis; in addition, estimating a cumulative hazard function is equally important since the two functions
are closely related. As an estimator of cumulative hazard function, the Nelson-Aalen estimator (Aalen,
1978; Nelson, 1972) and Peterson estimator (Peterson, 1977) are very popular among many estima-
tors. However, both estimators are step functions that are undesirable in some sense. In this paper,
we suggest a smoothing version of the Nelson-Aalen estimator and Peterson estimator using a Bezier
curve.

Bezier curve (Bezier, 1977) smoothing is a nonparametric approach to estimate density function
and regression function. Kernel-type smoothing is a very popular approach in computational graphics
it is often used for computer-aided-geometric design. Farin (2001) provide a detailed information
on the Bezier curve. Kim (1996) tried the rarely use Bezier curve to density estimation in statistics
area. Kim et al. (1999) showed that density function estimator (via the Bezier curve) has the same
asymptotic properties as classical kernel estimators, and showed that it has a smaller mean squared
error than the kernel estimator. Kim et al. (2000) applied Bezier curve smoothing to the estimation
of the measurement error model. Further use of the Bezier curve are the smoothing of the Kaplan-
Meier estimator (Kim et al., 2003), the smoothing of the bivariate Kaplan-Meier estimator (Bae et al.,
2005), the selection of Bezier points in density estimation and regression (Kim and Park, 2012) and
the nonparametric estimation of distribution function using the Bezier curve (Bae et al., 2014). Note
that the kernel smoothing has a poor performance at the boundary, especially in the survival function
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estimation. It does not guarantee that the kernel estimate is one at time zero. This phenomenon also
happens when estimating the cumulative hazard function, i.e., the kernel estimate of the cumulative
hazard function is not zero at time zero.

In this paper, we propose a smooth version of the cumulative hazard function estimators of the
Nelson-Aalen estimator and Peterson estimator using Bezier curve smoothing. We also compare them
with existing estimators in the sense of mean integrated square error (MISE). In addition, we apply
our method to the Cox regression (Cox, 1972) where covariates are used as predictors. This paper is
organized as follows. In Section 2, the Bezier curve is defined and existing cumulative hazard function
estimators are introduced. Bezier curve smoothing on existing estimators are suggested and numerical
studies that compare existing estimators are done in Section 3. An illustrative example is given for
the application of the proposed method to the Cox regression model. Finally, concluding remarks are
given in Section 4.

2. Cumulative hazard function estimator

2.1. Existing estimators

Let X1, . . . , Xn be the true survival times from the unknown distribution function F and let C1, . . . ,Cn

be the censoring times from the unknown distribution function G. It is assumed that X and C are
independent. The randomly right-censored data are the pairs (Yi, δi) where Yi = min{Xi,Ci} for i =
1, . . . , n and

δi =

{
1, if Xi ≤ Ci,
0, if Xi > Ci.

Note that δi called a censoring indicator. For notational simplicity, we assume no ties in survival
times, and let Y1 < Y2 < · · · < Yn be the ordered survival times and δi be the censoring indicator
corresponding to Yi. Let I(1) < I(2) < · · · < I(N) be indices of the uncensored survival times, where
N =

∑n
i=1 δi is the number of the uncensored survival times.

Two popular estimators of the cumulative hazard functions Λ(t) are the Nelson-Aalen estimator
and the Peterson estimator. The Nelson-Aalen estimator of Λ(t) is given by

Λ̂1(t) =
∑
i:Yi≤t

δi

n − i + 1
, (2.1)

and the Peterson estimator is given by

Λ̂2(t) =
∑
i:Yi≤t

− log
(
1 − δi

n − i + 1

)
. (2.2)

Note that two estimators are close because for small x, log(1 − x) ≃ −x. Note that the Kaplan-Meier
estimator (Kaplan and Meier, 1958) Ŝ (t) of the survival function S (t) has the following relationship
with the Peterson estimator:

Ŝ 2(t) = e−Λ̂2(t) =
∏
i:Yi≤t

(
1 − δi

n − i + 1

)
. (2.3)

Therefore, the Peterson estimator was derived by the relationship between the survival function S (t)
and the cumulative hazard function Λ(t). However, a version of estimator of the survival function
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based on the Nelson-Aalen estimator can be written as

Ŝ 1(t) = e−Λ̂1(t). (2.4)

Fleming and Harrington (1979) recommend Ŝ 1(t) as an alternative estimator for the survival function.
A kernel smooth version of the Nelson-Aalen estimator by Tanner and Wong (1983) can also be

written as

Λ̂∗1(t) =
∑
i:Yi≤t

δi

n − i + 1
W

( t − Yi

h

)
, (2.5)

where W(t) =
∫ t
−∞ K(x)dx. Here, K(·) is a kernel function, and h is bandwidth to be estimated. Simi-

larly, we denote a kernel smooth version of the Peterson estimator by Λ̂∗2(t).

2.2. The Bezier curve

Let b0 = (p0, q0)′, b1 = (p1, q1)′, . . . , bk = (pk, qk)′ be k+1 points in R2 satisfying p0 ≤ p1 ≤ · · · ≤ pk.
The Bezier curve based on the k + 1 Bezier points (also called control points) b0, b1, . . . , bk is defined
as

b(t) =
(

x(t)
y(t)

)
=

k∑
i=0

biBk,i(t), t ∈ [0, 1], (2.6)

where Bk,i(t) is the binomial density function (also called the Bernstein polynomial or a blending
function).

There are lots of good properties on a Bezier curve. First, Bezier curves have endpoint interpo-
lation property, i.e., b0 and bk are always on the Bezier curve b(t). Second, b(t) is symmetric, i.e.,
we can change the label b0, b1, . . . , bk to bk, bk−1, . . . , b0 (both cases have same results). Third, it pre-
serves linearity. Note that

∑k
i=0(i/k)Bk,i(t) = t for all t ∈ (0, 1), so an initial straight line is reproduced.

We can also easily get the first derivative of b(t) with respect to t as follows:

d
dt

b(t) = k
k−1∑
i=0

(bi+1 − bi)Bk−1,i(t). (2.7)

See Farin (2001) for further properties of the Bezier curve.

2.3. Proposed estimators

The advantage of the Bezier curve smoothing over other smoothing techniques such as kernel and
spline is that monotonicity is guaranteed. Note that the cumulative hazard function is non-decreasing,
and this monotonicity is guaranteed by the property of the Bezier curve smoothing. However, the
non-deceasing property of the cumulative hazard function may not be revealed by other smoothing
techniques. Also, by the end point property of the Bezier curve, it always goes through the origin
(0,Λ(0)); however, other smoothing techniques may not achieve this property due to the boundary
problem.

Note that the Bezier curve is determined by the choice of Bezier points. Figure 1 shows how we
determined Bezier points based on Nelson-Aalen estimator and Peterson estimator with the resulting
Bezier curve. The Bezier points in Figure 1(a) and (b) are located at all the edge points of existing
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(a) Nelson-Aalen estimator (b) Peterson estimator

Figure 1: The Bezier points, the Bezier curve and existing cumulative hazard function estimators.

estimators including origin point and end point. We assumed that the last observation is uncensored
since existing estimators are highly influenced by the last censoring indicator. Therefore, we have
2n + 2 Bezier points which are given by

b0 = (0, 0)′ , b1 =
(
XI(1), 0

)′ , b2 =
(
XI(1), Λ̂

(
XI(1)

))′
, b3 =

(
XI(2), Λ̂

(
XI(1)

))′
, b4 =

(
XI(2), Λ̂

(
XI(2)

))′
,

. . . , b2n =
(
XI(N), Λ̂

(
XI(N)

))′
, b2n+1 =

(
Xn, Λ̂

(
XI(N)

))′
.

The resulting Bezier curve is defined as

b(t) =
(

x(t)
y(t)

)
=

2n+1∑
i=0

biB2n+1,i(t), t ∈ [0, 1], (2.8)

where B2n+1,i(t) is the binomial density function. Finally, the Bezier estimator based on the Bezier
points given above is defined by

Λ̂(x) = y(tl), (2.9)

where tl is the point that x(tl) = x. Now, we denote the Bezier curve smooth version of the Nelson-
Aalen estimator and the Peterson by Λ̂3 and Λ̂4, respectively.

3. Numerical study

To evaluate the numerical performance of proposed estimators Λ̂3 and Λ̂4, we conduct simulation
studies by computing the mean integrated squared errors (MISE) of Λ̂1, Λ̂2, Λ̂

∗
1, Λ̂

∗
2, Λ̂3 and Λ̂4, re-

spectively.

3.1. Simulation 1

We generated survival times from Exp(1) and censoring times from Exp(λ) with 10% censoring (λ =
1/9) and 30% censoring (λ = 3/7). Sample sizes are n = 30 and n = 50. Figures 2 and 3 show that
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(a) n = 30, 10% censoring (b) n = 30, 30% censoring

(c) n = 50, 10% censoring (d) n = 50, 30% censoring

Figure 2: The true functionΛ, the Nelson-Aalen estimator Λ̂1, the kernel smooth version of Nelson-Aalen estima-
tor Λ̂∗1, and the Nelson-Aalen Bezier curve Λ̂3 (n = 30, 50 survival times generated from Exp(1) with 10%, 30%

censoring).

proposed estimators are closer to true function than existing estimators. One hundred replications are
done for each case to compare 6 estimators in the MISEs.

Table 1 summarizes the simulation results as well as lists MISE, integrated variance (IV) and in-
tegrated square bias (ISB) of 6 estimators Λ̂1, Λ̂2, Λ̂

∗
1, Λ̂

∗
2, Λ̂3 and Λ̂4 in each cases. First, the MISE

decreases as the sample size increases. Second, MISE increases as the censoring proportion increases.
Second, the amount of improvement by the kernel smooth versions Λ̂∗1 and Λ̂∗2 is not very apprecia-
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(a) n = 30, 10% censoring (b) n = 30, 30% censoring

(c) n = 50, 10% censoring (d) n = 50, 30% censoring

Figure 3: The true function Λ, the Peterson estimator Λ̂2, the kernel smooth version of Peterson estimator Λ̂∗2,
and the Peterson Bezier curve Λ̂4 (n = 30, 50 survival times generated from Exp(1) with 10%, 30% censoring).

ble. Finally, proposed estimators Λ̂3 and Λ̂4 (Bezier curve smoother) outperform existing estimators
Λ̂1, Λ̂2, Λ̂

∗
1, and Λ̂∗2, respectively, in the sense of the mean integrated square errors.

3.2. Simulation 2

We generated survival times from Weibull(2, 2) and censoring times from Exp(λ) with 10% censoring
(λ = 0.0562408) and 30% censoring (λ = 0.164726). Sample sizes are n = 30 and 50. Figures 4
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Table 1: MISE, IV and ISB of 6 estimators Λ̂1, Λ̂2, Λ̂
∗
1, Λ̂

∗
2, Λ̂3 and Λ̂4 in n = 30, 50 survival times generated

from Exp(1) with 10%, 30% censoring cases (×104)

n Censoring percentage Estimator MISE IV ISB
Λ̂1 151 107 44
Λ̂2 102 94 8

10 Λ̂∗1 145 140 5
Λ̂∗2 96 93 3
Λ̂3 96 52 44

30 Λ̂4 55 48 7
Λ̂1 189 170 19
Λ̂2 136 134 2

30 Λ̂∗1 180 170 10
Λ̂2 129 122 7
Λ̂3 150 127 23
Λ̂4 100 98 2
Λ̂1 65 61 4
Λ̂2 55 54 1

10 Λ̂∗1 60 58 2
Λ̂∗2 51 50 1
Λ̂3 45 40 5

50 Λ̂4 35 34 1
Λ̂1 95 92 3
Λ̂2 80 79 1

30 Λ̂∗1 91 89 2
Λ̂∗2 77 76 1
Λ̂3 77 74 3
Λ̂4 66 65 1

MISE = mean integrated squared errors, IV = integrated variance, ISB = integrated square bias.

and 5 show that the proposed estimators are closer to the true function than existing estimators. Also,
100 replications are done to compare 6 estimators in the sense of the MISEs. Table 2 summarizes the
simulation results as well as lists MISE, IV and ISB of 6 estimators Λ̂1, Λ̂2, Λ̂

∗
1, Λ̂

∗
2, Λ̂3 and Λ̂4 in each

cases. The results are similar to the Exp(1) case.

3.3. Example

One useful application of the estimator of the cumulative hazard function might be the estimation of
survival function at specific values of covariates. Also, if covariates are given, then the most widely
used regression model for the censored data is the Cox regression model when the assumptions are
satisfied.

As an illustrative example for this application, we consider Stanford heart transplant data with
n = 103. Though the data set contain representative time dependent covariates, we confine covariates
to time-independent. The data set consists of 75 uncensored observations and 28 censored ones, i.e.
there is 27.18% censoring as well as 3 time independent validated covariates. Figure 6 shows pairs of
Λ̂1 and Λ̂3, Λ̂2 and Λ̂4, respectively without covariates in the Stanford heart transplant data.

Now, we consider the Cox proportional hazards model (Cox, 1972) with covariates

λ(t; X) = eβ
t Xλ0(t), (3.1)

where λ(t; X) is a hazard function, β is a p-vector of regression coefficients, X is an p-vector of
covariates corresponding the survival time, and λ0(t) is called baseline hazard function, i.e., hazard at
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(a) n = 30, 10% censoring (b) n = 30, 30% censoring

(c) n = 50, 10% censoring (d) n = 50, 30% censoring

Figure 4: The Nelson-Aalen estimator Λ̂1, the true function Λ and the Nelson-Aalen Bezier curve Λ̂3 (n = 30, 50
survival times generated from Weibull(2, 2) with 10%, 30% censoring).

X = 0. We can easily transform the model by

S (t; X) = S 0(t)exp[βt X], (3.2)

where S 0(t) = e−Λ0(t). Estimators β̂ of β is given by

β̂ = (0.05919,−0.74266,−1.66121).
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(a) n = 30, 10% censoring (b) n = 30, 30% censoring

(c) n = 50, 10% censoring (d) n = 50, 30% censoring

Figure 5: The Peterson estimator Λ̂2, the true function Λ and the Peterson Bezier curve Λ̂4 (n = 30, 50 survival
times generated from Weibull(2, 2) with 10%, 30% censoring).

We also compute the cumulative hazard function at four survival times

t8 = 5, t19 = 17, t31 = 39, t75 = 342,

where corresponding covariates are

X8 = (41, 0, 1), X19 = (29, 0, 1), X31 = (35, 1, 1), X75 = (47, 1, 1).
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Table 2: MISE, IV and ISB of 6 estimators Λ̂1, Λ̂2, Λ̂
∗
1, Λ̂

∗
2, Λ̂3 and Λ̂4 in n = 30, 50 survival times generated

from Weibull(2, 2) with 10%, 30% censoring cases (×104)

n Censoring percentage Estimator MISE IV ISB
Λ̂1 144 88 56
Λ̂2 87 73 14

10 Λ̂∗1 124 110 14
Λ̂∗2 84 75 9
Λ̂3 73 29 44

30 Λ̂4 32 24 8
Λ̂1 213 152 61
Λ̂2 150 134 16

30 Λ̂∗1 151 140 11
Λ̂∗2 131 119 12
Λ̂3 127 81 46
Λ̂4 82 74 8
Λ̂1 63 54 9
Λ̂2 52 50 2

10 Λ̂∗1 55 49 6
Λ̂∗2 49 47 2
Λ̂3 33 26 7

50 Λ̂4 26 25 1
Λ̂1 85 79 6
Λ̂2 73 71 2

30 Λ̂∗1 80 74 6
Λ̂∗2 66 62 2
Λ̂3 55 51 4
Λ̂4 46 45 1

MISE = mean integrated squared errors, IV = integrated variance, ISB = integrated square bias.

(a) Nelson-Aalen estimator (b) Peterson estimator

Figure 6: Cumulative hazard functions, pairs of Λ̂1 and Λ̂3, Λ̂2 and Λ̂4, respectively without covariate in the
Stanford heart transplant data.
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(a) t8 = 5, X8 = (41, 0, 1) (b) t19 = 17, X19 = (29, 0, 1)

(c) t31 = 39, X31 = (35, 1, 1) (d) t75 = 342, X75 = (47, 1, 1)

Figure 7: Survival functions, compared Ŝ 1 originated from the Nelson-Aalen estimator Λ̂1 to Ŝ 3 originated from
proposed estimator Λ̂3 with time independent covariates in the Stanford heart transplant data.

Survival function estimators Ŝ 1 based on Λ̂1 and Ŝ 3 based on Λ̂3 are given in Figure 7, and Ŝ 2 based
on Λ̂2 and Ŝ 4 based on Λ̂4 are given in Figure 8.

4. Concluding remarks

Estimating a cumulative hazard function in randomly right censored data is equally as important as
estimating a survival function since the two functions are closely related. As estimators of cumulative
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(a) t8 = 5, X8 = (41, 0, 1) (b) t19 = 17, X19 = (29, 0, 1)

(c) t31 = 39, X31 = (35, 1, 1) (d) t75 = 342, X75 = (47, 1, 1)

Figure 8: Survival functions, compared Ŝ 2 originated from the Peterson estimator Λ̂2 to Ŝ 4 originated from
proposed estimator Λ̂4 with time independent covariates in the Stanford heart transplant data.

hazard function, the Nelson-Aalen estimator and Peterson estimator are often used for simplicity;
however, both estimators are step functions which are undesirable in some sense. A kernel smooth
version of those step functions can be used to avoid this weak aspect; however, they still have boundary
problem and choice of optimal smoothing parameter. In this paper, we suggest a smoothing version
of the Nelson-Aalen estimator and Peterson estimator using a Bezier curve. Bezier curve smoothing
is nonparametric approach and is one kernel-type smoothing. We proposed smooth version of the
cumulative hazard function estimators of the Nelson-Aalen estimator and Peterson estimator using
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Bezier curve smoothing. We also compare them with existing estimators in the sense of MISE, and
use numerical studies to show that the proposed estimators are better than existing ones. We also
applied our method to the Cox regression where covariates are used as predictors.
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