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Abstract
Interval censored data often occur in an observational study where the subject is followed periodically. In-

stead of observing an exact failure time, two inspection times that include it are available. There are several
methods to analyze interval censored failure time data (Sun, 2006). However, in the presence of competing risks,
few methods have been suggested to estimate covariate effect on interval censored competing risk data. A sub-
distribution hazard model is a commonly used regression model because it has one-to-one correspondence with a
cumulative incidence function. Alternatively, Klein and Andersen (2005) proposed a pseudo-value approach that
directly uses the cumulative incidence function. In this paper, we consider an extension of the pseudo-value ap-
proach into the interval censored data to estimate regression coefficients. The pseudo-values generated from the
estimated cumulative incidence function then become response variables in a generalized estimating equation.
Simulation studies show that the suggested method performs well in several situations and an HIV-AIDS cohort
study is analyzed as a real data example.

Keywords: competing risks, cumulative incidence function, GEE, interval censored data, pseudo-
value approach

1. Introduction

A competing risk model has been applied to provide more valid statistical inferences when the subjects
are at risk of failure from several causes (Geskus, 2015). For investigating the effect of covariate on
the cause-related failure, two approaches have been applied: the cause-specific hazard (CSH) and the
subdistribution hazard (SH). The CSH measures the instantaneous hazard of a particular cause-related
failure by regarding other causes-related failures as censoring. The SH has a direct relation with a
cumulative incidence function (CIF) that also make it possible to extend the result in order to interpret
the covariate effect on the CIF (Fine and Gray, 1999). However, the SH utilizes a distribution of right
censoring variable to reflect a possible contribution of competing failures to risk set. In a context
of interval censored failure time, the distribution of such a censoring variable seems complex. For
example, under a mixed case interval censored data, a right censoring is defined as the last inspection
time of having no failure and should therefore be specified in the inspection process (Schick and Yu,
2000). Therefore, the direct application of Fine and Gray’s method to interval censored data seems to
be inappropriate.

Andersen et al. (2003) and Klein and Andersen (2005) presented a pseudo-value approach to
directly model the effect of covariate on the cumulative incidence function. The objective is to replace
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the true but unknown survival times with pseudo-values. If we want to estimate θ = E( f (t)) for a
function f of failure time t, then it can be calculated with 1/n

∑n
i=1 f (ti) with a known ti. For example,

f (t) = I(t > u) becomes a survival function. Now, pseudo-values are defined as

θ̂i = nθ̂ − (n − 1)θ̂−i,

where θ̂−i is the estimator θ̂ calculated based on the sample leaving out the ith observation. Our interest
is to estimate covariate effect on failure time with censoring. In more detail, define (T̃i, δi), i = 1, . . . , n,
where T̃i = Ti ∧ Ci and δi = I(Ti = T̃i) with a censoring time Ci and a failure time Ti. Denote Zi as a
covariate vector of subject i and Di as a cause indicator, respectively. Assume that the censoring time
Ci is independent of (T̃i, D̃i,Zi), where D̃i = δiDi. Define Nik(t) = I(T̃i ≤ t, D̃i = k) as the count of the
kth cause failures over [0, t] and Yi(t) = I(T̃i ≥ t) as at-risk indicator of subject i, respectively. Then,
the cumulative incidence function is estimated as the simple version of the Aalen-Johansen estimator,
that is, a special case of a multi-state model with a transition probability Plh(s, t) and is defined as

F̂k(t) =
∫ t

0
Ŝ (u−)dÂk(u) = P̂0k(0, t),

where

Âk(t) =
∫ t

0

∑n
i=1 dNik(u)∑n

i=1 Yi(u)

is the Nelson-Aalen estimator of the cumulative cause specific hazard function and Ŝ (t) is the Kaplan-
Meier estimator calculated using all causes failures. Klein and Andersen (2005) proposed the use
of pseudo-values to estimate a covariate effect on the cumulative incidence function. These pseudo-
values are calculated at the grids of time-points w1 < w2 < · · · < ws chosen from observed failure
times. Too many grids give a burden to calculate too many values; therefore, five to ten time-points
equally spaced on the failure time scale have been suggested. Graw et al. (2009) showed the unbi-
asedness using a second-order von Mises expansion and Jacobsen and Martinussen (2016) utilized a
U-statistic to establish the estimating equation and proposed a new type of variance.

Some studies have been proposed for an interval censored competing risk data. For a current status
data, Jewell et al. (2003) developed a NPMLE and a pseudo MLE of a CIF and Jewell and Kalbfleisch
(2004) suggested a modified pool adjacent violator algorithm (PAVA). For general interval censored
data, Hudgens et al. (2001) suggested NPMLEs. However, only a few works have been done on a
regression model. Sun and Shen (2009) proposed a two-stage estimation procedure for a cause specific
event incidence probability and a hazard function. Hudgens et al. (2014) suggested a parametric
regression model by extending Jeong and Fine (2006)’s method.

In this paper, we consider an extension of a pseudo-value approach to interval censored data.
In Section 2, the estimation procedure is described and the performance of the suggested method is
evaluated via several simulation studies in Section 3. Section 4 presents the result of the application
to a real dataset and some discussions are commented on in Section 5.

2. Statistical model

Denote li, ri, d̃i, zi as the observable data set from a subject i = 1, . . . , n. Assume that censoring times
li and ri satisfying li < ti < ri are independent of a failure time ti. The first step of a pseudo-value
approach is to estimate CIF. By extending Turnbull’s (1974) self-consistency algorithm, Hudgens et al.
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(2001) suggested two versions of nonparametric estimators. The NPMLE of CIF has a cause specific
time support that results in undefined regions when implementing with overall survival functions. As
an alternative approach, a pseudolikelihood estimator (PLE) was calculated with a pooled time support
derived from all causes interval censored data. In this paper, we adopt the PLE to estimate CIF for
interval censored data. Denote E = ∪m

l=1[ql, pl] as an equivalence set which is a set of nonoverlapping
intervals. [ql, pl] is defined as the elements of left censoring times and the ones of right censoring
times following immediately (Lindsey and Ryan, 1998; Peto, 1973). Now, denote αk

il as an indicator
variable, αk

il = I([ql, pl] ∈ [li, ri) ∩ d̃i = k) and let ψk
l = Fk(pl+) − Fk(ql−). Then a pseudolikelihood

is defined as
∏n

i=1[Fdi (ri−) − Fdi (li−)]δi S (li)1−δi . Based on Hudgens’ Lemmas (Hudgens et al., 2001)
related with E and Fk, this likelihood is rewritten as

n∏
i=1

K∑
k=1

m∑
l=1

[
αk

ilψ
k
l

]
.

To estimate ψ = ψk
l , define an indicator Ik

il = {ti ∈ [ql, pl] ∩ d̃i = k}. However, this quantity is
unavailable owing to unknown failure times ti. To solve this problem, the EM algorithm (Dempster et
al., 1977) is applied. In E-step, given the data Oi = li, ri, d̃i, and ψ,

E
(
Ik
il|ψ,Oi

)
= µk

il(ψ) =
αk

ilψ
k
l∑K

k′=1

∑m
l′=1 α

k′

il′
ψk′

l′
(2.1)

is calculated. Then at M-step, the proportion of failure of cause k at the lth interval is obtained with

ψk
l (ψ) =

n∑
i=1

ψ̃l
µk

il∑
l′ µ

k
il′
, ψ̃l =

K∑
k=1

ψk
l . (2.2)

With initial values of {ψk
l = 1/(Km), k = 1, . . . ,K; l = 1, . . . ,m}, iterate (2.1) and (2.2) until a

convergence criterion satisfies. Using the final values of {ψ̂k
l }, the NPMLE of CIF is defined as F̂k(t) =∑l

j=1 ψ̂
k
j if pl < t < ql+1 and F̂k(t) = ψ̂k

1 + · · · + ψ̂k
m if t > pm.

The next step after estimating a CIF is to generate the Jackknife pseudo-values at the prefixed
grids of time points w1 < · · · < wr,

θi j = nF̂k(w j) − (n − 1)F̂(−i)
k (w j), j = 1, . . . , r. (2.3)

In order to find grid points, the equivalence set is utilized. Define el = {(ql + pl)/2}, l = 1, . . . ,m.
Then w1 < · · · < wr are determined as the points with equal distances among the sorted el’s. By
treating θi = (θi1, . . . , θir)′ as the repeated response variables and applying a suitable link function g,
the following generalized estimating equation (Liang and Zeger, 1986) is applied

U(β) =
n∑

i=1

Ui(β) =
n∑

i=1

(
∂g−1 (β′zi)

∂β

)′
V−1

i

{
θi − g−1 (

β′zi
)}
= 0, (2.4)

where g(θi) = (g(θi1), . . . , g(θir))
′
, g(θi j) = α j + γ

′
zi = β

′
zi j with β = (α1, . . . , αr, γ) and Vi =

Cov(θil, θil′ ) is a working covariance matrix where AR(1) and independence covariance are most com-
monly used. Graw et al. (2009) remarked the condition of an asymptotic unbiasedness and expressed
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Table 1: Estimation of a binary covariate effects using pseudo-values

p n Independence AR(1)
Bias ESE SSE CP Bias ESE SSE CP

100 0.009 0.448 0.442 0.952 0.008 0.467 0.450 0.966
0.3 200 0.019 0.317 0.312 0.965 0.019 0.332 0.320 0.968

300 0.012 0.259 0.251 0.946 0.014 0.271 0.257 0.944
100 0.008 0.326 0.316 0.948 0.019 0.343 0.328 0.946

0.6 200 0.003 0.225 0.226 0.964 0.005 0.237 0.236 0.965
300 0.005 0.189 0.184 0.948 0.006 0.198 0.193 0.954

Table 2: Estimation of a continuous covariate effects using pseudo-values

p n Independence AR(1)
Bias ESE SSE CP Bias ESE SSE CP

100 0.020 0.645 0.638 0.943 0.023 0.670 0.648 0.936
0.3 200 0.012 0.442 0.449 0.950 0.020 0.465 0.452 0.947

300 0.013 0.348 0.349 0.956 0.014 0.353 0.351 0.956
100 0.020 0.470 0.467 0.947 0.017 0.485 0.471 0.936

0.6 200 0.009 0.320 0.310 0.950 0.020 0.334 0.324 0.943
300 0.014 0.250 0.249 0.956 0.017 0.260 0.257 0.960

the Jackknife pseudo-values as the von Mises expansion to derive the asymptotic properties including
the following sandwich variance.

Σ̂ = Γ̂−1
(
β̂
)

V̂ar
(
U

(
β̂
))
Γ̂−1

(
β̂
)
, (2.5)

where

Γ̂−1
(
β̂
)
=

n∑
i=1

dg−1
(
β
′
zi

)
dβ


′

V−1
i

dg−1
(
β
′
zi

)
dβ


∣∣∣∣∣∣
β=β̂

,

and

V̂ar
(
U

(
β̂
))
=

n∑
i=1

Ui(β)Ui(β)′|β=β̂.

3. Simulation

In this section, the performance of our proposed method is demonstrated with some simulated data.
500 replications with sample size n = 100, 200 and 300 are generated. We consider two types of
covariates: a binary covariate Z = {0, 1} generated from a Bernoulli distribution with p = 0.5 and a
continuous covariate Z ∼ N(0, 0.4). For simplicity, two causes are assumed (K = 2). Then a cause 1
failure time is generated with the following cumulative incidence function

F1(t|Z) = 1 − exp(−Λ0(t)exp(γZ)),

where Λ0(t) =
∫ t

0 λ0(s)ds with λ0(t) = pe−t/(1 − p(1 − e−t)) and p is the occurrence probability of
cause 1 failure, that is, F1(∞|Z = 0) = p. In this simulation, two values of p are used (p = 0.3 or
0.6). In order to make interval censored data, the different number of inspections for each subject is
generated from a discrete uniform hi ∼ U(10, 20) and then hi’s inspection gap times are generated
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Table 3: Results of estimating effects of covariates for subtype E based on Independence

TGP Covariate logit model cloglog
γ̂ se(γ̂) p-value γ̂ se(γ̂) p-value

4 Age −0.039 0.015 0.011 −0.036 0.014 0.014
Gender (female = 1) 0.782 0.358 0.028 0.719 0.327 0.028

5 Age −0.035 0.015 0.023 −0.032 0.014 0.028
Gender (female = 1) 0.859 0.364 0.018 0.782 0.330 0.017

6 Age −0.038 0.015 0.013 −0.035 0.014 0.016
Gender (female = 1) 0.831 0.358 0.020 0.759 0.326 0.019

Table 4: Results of estimating effects of covariates for subtype E based on AR

TGP Covariate logit model cloglog
γ̂ se(γ̂) p-value γ̂ se(γ̂) p-value

4 Age −0.037 0.015 0.014 −0.035 0.014 0.012
Gender (female = 1) 0.789 0.360 0.028 0.719 0.327 0.028

5 Age −0.035 0.015 0.019 −0.032 0.015 0.033
Gender (female = 1) 0.872 0.371 0.018 0.789 0.333 0.028

6 Age −0.035 0.015 0.016 −0.034 0.014 0.015
Gender (female = 1) 0.837 0.363 0.021 0.762 0.328 0.020

from gl ∼ U(0.05, 0.1). Then set (Li,Ri) as an interval censored data when satisfying Li = al−1 <
Ti < Ri = al with Li = al−1 = al−2 + gl−1,Ri = al−1 + gl and a0 = 0. If Ti > ahi , Ti is regarded as
a right censored with (Li,Ri) = (ahi ,∞). Now, pseudo-values were calculated at 6 grid time points
(w1 < · · · < w6) selected from the equivalence sets described at the previous section.

Tables 1 and 2 show the simulation results for a binary covariate and a continuous covariate,
respectively. Each table includes the absolute bias of γ̂, empirical standard error (ESE), mean of
sandwich standard error (SSE), and 95% coverage probabilities (CP) under two working covariance
structures (independence and AR(1)). The estimates show that biases are small for all cases and
standard errors calculated from the sandwich estimator and ESE are similar. Also, the empirical
coverage probabilities almost satisfy nominal level. Compared results with two different p values,
a larger p(= 0.6) value with more cause 1 failures results in smaller standard errors than a smaller
p(= 0.3) one. Also, compared two covariance structures, the ESE under AR(1) is larger than one
under independence working covariance.

4. Data analysis

The suggested method is applied to a HIV vaccine study designed to investigate the rates of HIV
incidence and determine related risk factors (Hudgens et al., 2002). This project was established to
assess the feasibility of the vaccine to HIV in the injecting drug users (IDU) in Bangkok, Thailand.
1209 HIV seronegative IDU were enrolled and they were supposed to visit about every four months
for counseling and assessment of HIV seroconversion. A total of 1124 people had at least one visit,
with 133 diagnosed with HIV seroconversion among them. In this study, two subtypes strains such
as subtype B strain and subtype E strain can occur and the occurrence of one subtype censors one of
the other subtype. In detail, of the 133 converts, 27 and 99 subjects have subtype B and subtype E,
respectively, and the remaining seven patients’ subtypes were unknown. We investigate the effect of
age and gender (female = 1) on the subtype E with the suggested method. To generate pseudo-values,
three different numbers of grids (TGP = 4, 5, 6) are implemented using equivalence sets and two link
functions (logit and complementary log-log) are applied. Tables 3 and 4 show estimated covariate
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Figure 1: Cumulative incidence functions of subtype E for male and female group.

effects under two different covariance structures. According to results, older patients have a lower
incidence rate than younger ones and female patients have a higher incidence rate than male patients.
The results are similar among two covariance structures, two link functions and three different num-
bers of time grids. Figure 1 shows the estimated CIFs of subtype E of two genders by applying the
PLE described in Section 2. From it, female patients seem to have a higher occurrence rate than male
patients during the whole time period. However, this result should be dealt carefully because there
were only fourteen female patients among the 133 ones.

5. Discussion

As the most widely used competing risk regression model, Fine and Gray’s subdistribution hazard
model is based on an inverse probability censoring weighting technique that requires a specification
of the distribution of censoring times. However, for interval censored data with different censoring
structure, such specification is neither amenable nor possible. Therefore, we suggest the extension
of the pseudo-value regression model proposed by Klein and Andersen (2005) to interval censored
data instead of applying the Fine and Gray’s model. Jackknife pseudo-values are obtained from the
estimated cumulative incidence function. The suggested approach can be implemented with an ordi-
nary program since all calculations are performed using R package pseudo once estimating the CIFs.
Simulation results show the proposed method results in consistent estimates and desirable coverage
probabilities. The suggested pseudo-value approach can be applied to a multi-state model with several
transition states and corresponding probabilities. In the studies on a multi-state model, Barrett et al.
(2011) developed an interval censored semi-competing risk model that allowed a one direction transi-
tion between terminal events. Kim (2014) analyzed a bivariate current status data using a multi-state
model. Commenges (2002) provided a review of the multi-state model with interval censored data.
Another possible future work is about a missing cause. The IDU dataset includes seven subjects with
unidentified HIV subtypes. Even though the number of the subjects with a missing cause is small in
this dataset, this problem has commonly occurred in competing risk data; therefore, suitable methods
should be developed for interval censored data (Goetghebeur and Ryan, 1995; Lu and Tsiatis, 2001;
Moreno-Betancur and Latouche, 2013).
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