• Title/Summary/Keyword: Cucumber mosaic virus (CMV-Y)

Search Result 146, Processing Time 0.021 seconds

Characterization of an Isolate of Cucumber mosaic virus Isolated from Chinese aster (Callistephus chinensis) (과꽃에서 분리한 Cucumber mosaic virus의 성질)

  • Oh, Sun-Mi;Kim, Sung-Ryul;Hong, Jin-Sung;Ryu, Ki-Hyun;Lee, Gung-Pyo;Choi, Jang-Kyung
    • Research in Plant Disease
    • /
    • v.14 no.3
    • /
    • pp.229-232
    • /
    • 2008
  • An isolate of Cucumber mosaic virus (CMV), designated as Cas-CMV, was isolated from Chinese aster (Callistephus chinensis) showing severe mosaic symptom, and its properties was compared to the well-characterized Fny-CMV (subgroup IA) and As-CMV (subgroup IB) by host reaction in several indicator plants, dsRNA analysis, RT-PCR analysis, and restriction enzyme profile of the PCR products. Cas-CMV differed markedly in their host reaction to Fny-CMV or As-CMV in Cucurbita pepo cv. Black beauty. In the zucchini squash, all strains induced chlorotic spot on inoculated leaves and mosaic symptoms on upper leaves. However, symptoms induced by Cas-CMV were developed lethal necrosis on the young plants 15 to 20 days after inoculation. In experiments of dsRNA analysis and RT-PCR analysis, properties of Cas-CMV was come within subgroup I CMV. Moreover, restriction enzyme analysis using HindIII of the RT-PCR products showed that Cas-CMV belong to a member of CMV subgroup IA.

Characterization of Cucumber mosaic virus Isolated from Trifolium repens in Korea (국내 토끼풀에서 분리한 Cucumber mosaic virus의 특성)

  • Park, Tae Seon;Choi, Gug Seoun;Hong, Jin Sung
    • Research in Plant Disease
    • /
    • v.22 no.1
    • /
    • pp.55-58
    • /
    • 2016
  • A Cucumber mosaic virus (named CMV-Tr1) isolated from the white clover (Trifolium repens) showing mosaic and malformation that found in a pepper field. Cucumber mosaic virus was identified through confirmation with PT-PCR, PCR-restriction fragment length polymorphism, and sequence analysis of coat protein (CP) gene. CMV-Tr1 mosaic symptom on the upper leaves of five tobacco species including Nicotiana benthamiana, Cucumis sativus, Physalis angulata, and Solanum lycopersicon. In Chenopodium quinoa and Vigna unguiculata the isolate showed local lesions in inoculated leaves. CMV-Tr1 compared with CMV-As in the sequence identity of CP gene. CMV-Tr1 showed 98.9% and 99.5% homologies at nucleotide and amino acid levels, respectively. Phylogenetic analysis of the CP gene indicated that CMV-Tr1 belongs to the CMV subgroup IB base on the CP. To our knowledge, this is the first report of CMV in T. repens in Korea.

First report of Cucumber mosaic virus in African Impatiens (Impatiens walleriana) in Korea

  • Choi, Seung Kook;Choi, Gug-Seoun;Kwon, Sun-Jung;Cho, In-Sook;Yoon, Ju-Yeon
    • Research in Plant Disease
    • /
    • v.21 no.4
    • /
    • pp.341-345
    • /
    • 2015
  • Virus-like symptoms including stunt, severe mosaic with malformation of leaves, fern-like leaves and abnormal petals were observed from an African impatiens (Impatiens walleriana) grown in a plant nursery in Icheon, Korea. Serological analysis using immuno-strip kits for viruses reported in African impatiens indicated that Cucumber mosaic virus (named CMV-Im) was a causal agent for the symptomatic African impatiens. Biological properties of CMV-Im were analyzed using responses of host plant species, suggesting that CMV-Im is a typical strain that belongs to CMV subgroup I. RT-PCR analysis verified CMV-Im infection from naturally infected African impatiens or mechanically inoculated some host species. Analysis of multiple alignments of CMV capsid protein (CP) sequences showed that CMV-Im shared high CP amino acids identities with other CMV strains. Phylogenetic tree analysis for the CP sequences of CMV-Im and representative CMV strains confirmed that CMV is a typical member of CMV subgroup I. To our knowledge, it is the first report of CMV in African impatiens in Korea.

Molecular and Biological Characterization of an Isolate of Cucumber mosaic virus from Glycine soja by Generating its Infectious Full-genome cDNA Clones

  • Phan, Mi Sa Vo;Seo, Jang-Kyun;Choi, Hong-Soo;Lee, Su-Heon;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.30 no.2
    • /
    • pp.159-167
    • /
    • 2014
  • Molecular and biological characteristics of an isolate of Cucumber mosaic virus (CMV) from Glycine soja (wild soybean), named as CMV-209, was examined in this study. Comparison of nucleotide sequences and phylogenetic analyses of CMV-209 with the other CMV strains revealed that CMV-209 belonged to CMV subgroup I. However, CMV-209 showed some genetic distance from the CMV strains assigned to subgroup IA or subgroup IB. Infectious full-genome cDNA clones of CMV-209 were generated under the control of the Cauliflower mosaic virus 35S promoter. Infectivity of the CMV-209 clones was evaluated in Nicotiana benthamiana and various legume species. Our assays revealed that CMV-209 could systemically infect Glycine soja (wild soybean) and Pisum sativum (pea) as well as N. benthamiana, but not the other legume species.

Biological Characterization and Sequence Analysis of Cucumber mosaic virus isolated from Capsicum annuum

  • Kim, Min-Jea;Choi, Seung-Kook;Yoon, Ju-Yeon;Choi, Jang-Kyung;Ryu, Ki-Hyun
    • The Plant Pathology Journal
    • /
    • v.21 no.2
    • /
    • pp.142-148
    • /
    • 2005
  • Whereas most of isolates of Cucumber mosaic virus(CMV) can induce green mosaic systemic symptoms on zucchini squash, foliar symptoms of a pepper isolate of CMV (Pf-CMV)-infected zucchini squash revealed systemic chlorotic spots. To assess this biological property, infectious full-length cDNA clones of Pf-CMV were constructed using long-template RT-PCR. The complete nucleotide sequences of RNA2 and RNA3 of Pf-CMV were determined from the infectious fulllength cDNA clones, respectively. RNA 2 and RNA3 of Pf-CMV contain 3,070 nucleotides and 2,213 nucleotides, respectively. Overall sequence homology of two RNAs revealed high similarity (90%) between CMV strains, and 60% similarity to those of Tomato aspermy virus and Peanut stunt virus strains. By sequence analysis with known representative strains of CMV, Pf- CMV belongs to a typical member of CMV subgroup IA. The virus has high evolutionary relationship with Fny-CMV, but the pathology of Pf-CMV in zucchini squash was quite different from that of Fny-CMV. The pesudorecombinant virus, F1P2P3, induced chlorotic spot leaf symptom and timing of systemic symptom in squash plants, similar to the plants infected by Pf-CMV. No systemic symptoms were observed when Pf-CMVinoculated cotyledons were removed at 5 days postinoculation (dpi) while Fny-CMV showed systemic symptom at 2 dpi. These results suggest that the pepper isolate of CMV possesses unique pathological properties distinguishable to other isolates of CMVs in zucchini squash.

Detection, isolation, and characterization of the cucumber mosaic virus in Pseudostellaria heterophylla from Korea

  • Lee, Da Hyun;Kim, Jinki;Han, Jun Soo;Lee, Jae-Hyeon;Lee, ByulHaNa;Park, Chung Youl
    • Journal of Plant Biotechnology
    • /
    • v.47 no.2
    • /
    • pp.150-156
    • /
    • 2020
  • Weeds play an important role in the survival of viruses and are potential inoculum sources of viral diseases for crop plants. In this study, specimens of Pseudostellaria heterophylla exhibiting symptoms of the cucumber mosaic virus (CMV) were collected in Bonghwa, Korea. The characteristics of the disease were described and leaf RNA was extracted and sequenced to identify the virus. Three CMV contigs were obtained and PCR was performed using specific primer pairs. RNA from positive samples exhibiting CMV leaf symptoms was amplified to determine the coat protein. A sequence comparison of the coat protein gene from the CMV BH isolate shared the highest nucleotide identity (99.2%) with the CMV ZM isolate. Phylogenetic analysis showed that CMV-BH belonged to subgroup IA and that the most closely-related isolate was CMV-ZM. All test plants used for the biological assay were successfully infected with CMV and exhibited CMV disease symptoms such as blistering, mosaic, and vein yellowing. To our knowledge, this is the first report of CMV infection in P. heterophylla from Korea.

First Report of Cucumber mosaic virus Isolated from Wild Vigna angularis var. nipponensis in Korea

  • Kim, Mi-Kyeong;Jeong, Rae-Dong;Kwak, Hae-Ryun;Lee, Su-Heon;Kim, Jeong-Soo;Kim, Kook-Hyung;Cha, Byeongjin;Choi, Hong-Soo
    • The Plant Pathology Journal
    • /
    • v.30 no.2
    • /
    • pp.200-207
    • /
    • 2014
  • A viral disease causing severe mosaic, necrotic, and yellow symptoms on Vigna angularis var. nipponensis was prevalent around Suwon area in Korea. The causal virus was characterized as Cucumber mosaic virus (CMV) on the basis of biological and nucleotide sequence properties of RNAs 1, 2 and 3 and named as CMV-wVa. CMV-wVa isolate caused mosaic symptoms on indicator plants, Nicotiana tabacum cv. Xanthi-nc, Petunia hybrida, and Cucumis sativus. Strikingly, CMV-wVa induced severe mosaic and malformation on Cucurbita pepo, and Solanum lycopersicum. Moreover, it caused necrotic or mosaic symptoms on V. angularis and V. radiate of Fabaceae. Symptoms of necrotic local or pin point were observed on inoculated leaves of V. unguiculata, Vicia fava, Pisum sativum and Phaseolus vulgaris. However, CMV-wVa isolate failed to infect in Glycine max cvs. 'Sorok', 'Sodam' and 'Somyeong'. To assess genetic variation between CMV-wVa and the other known CMV isolates, phylogenetic analysis using 16 complete nucleotide sequences of CMV RNA1, RNA2, and RNA3 including CMV-wVa was performed. CMV-wVa was more closely related to CMV isolates belonging to CMV subgroup I showing about 85.1-100% nucleotide sequences identity to those of subgroup I isolates. This is the first report of CMV as the causal virus infecting wild Vigna angularis var. nipponensis in Korea.

Characterization of Cucumber mosaic virus Isolated from Water Chickweed(Stellaria aquatica)

  • Park, Gug-Seoun;Kim, Jae-Hyun;Kim, Jeong-Soo;Park, Jang-Kyung
    • The Plant Pathology Journal
    • /
    • v.20 no.2
    • /
    • pp.131-134
    • /
    • 2004
  • A strain of Cucumber mosaic virus (CMV) was isolated from a weed, water chickweed (Stellaria aquatica), growing in the pepper field in Chunchon, Korea. This isolate, CMV-Sa, was differentiated from other CMVs based on biological properties and nucleotide sequence analysis of the coat protein (CP) gene. CMV-Sa showed different reactions to all the tested plants, except Capsicum annuum and Cucumis sativus, when compar-ed with those of CMV-Mf (subgroup I) and CMV-PaFM (subgroup II). Remarkably, in Nicotiana tabacum cvs. Samsun, Xanthi-nc and Ky-57, CMV-Sa induced local necrotic ring spots on the inoculated leaves and venal wave pattern and mosaic on the upper leaves. RNA analysis, serology, and RT-PCR of CP gene showed that CMV-Sa belonged to subgroup I of CMV. However, restriction enzyme analysis of the cDNA using AluI, HhaI, HincII, HindIII, HinfI and MspI showed that CMV-Sa was distinct from that of CMV-Mf. Based on comparison of the nucleotide of CP gene and deduced amino acid sequences between other CMV strains, CMV-Sa was closely related to CMV-Mf with 93.7% and 97.2 % identity, respectively.

Plant Disease Caused by Cucumber Mosaic Cucumovirus - Potential Role of Genes Associated with Symptom - (Cucumber Mosaic Cucumovirus에 의한 식물의 병 - 병징관련 유전자의 기능을 중심으로 -)

  • 최장경;김혜자
    • Plant Disease and Agriculture
    • /
    • v.5 no.1
    • /
    • pp.14-19
    • /
    • 1999
  • Cucumber mosaic cucumovirus (CMV) is an isometric plant virus with functionally divided genomic RNAs and a broad host range. RNA 1 and RNA 2 each encode one protein, both of which are essential for replication. RNA 3 encodes the viral coat protein and an additional protein thought to be involved in potentiating the cell-to-cell movement of the virus. Functions of the RNAs have been confirmed using a pseudorecombinant virus constructed with infectious cDNA-derived transcripts of the RNAs. Generally, CMV produces different symptoms in various host plants depending on the virus strains. In this mini-review, we describe the potential role of the genes associated with symptom expression of CMV RNAs.

  • PDF

Symptom Determinant as RNA3 of Lily Isolates of Cucumber mosaic virus on Zucchini Squash

  • Cho, Seung-Kook;Ahn, Hong-Il;Kim, Min-Jea;Choi, Jang-Kyung;Ryu, Ki-Hyun
    • The Plant Pathology Journal
    • /
    • v.20 no.3
    • /
    • pp.212-219
    • /
    • 2004
  • Three isolates of Cucumber mosaic virus (CMV) from lily plants showing mosaic and distortion symptoms were detected by reverse-transcriptase polymerase chain reaction (RT-PCR) using primers specific to Cucumovirus genus namely, LK-CMV, LK4-CMV, and LKS-CMV. Restriction enzymes patterns of the RT-PCR products revealed that the lily isolates belonged to subgroup IA of CMV. In terms of biological properties, the lily isolates have highly similar but distinct pathogenicity as reported in other lily strains and ordinary strains of CMV. To characterize the molecular properties, cDNAs containing coat protein (CP) gene and 3' non-coding region (NCR) of RNA3 for the isolates were cloned and their nucleotide sequences were determined. The CP similarity (218 amino acids) was highly homologous (>97%) with that of subgroup I CMV strains. However, an additional 20-nulcleotide long segment was only present in 3' NCR of lily isolates, which form an additional stem-loop RNA structure. By using chimeric construct exchange cDNA containing 3'NCR of LK-CMV into the full-length cDNA clone of RNA3 of Fny-CMV, this additional segment may prove to be significant in the identification and fitness of the virus in lily plants. The pathology of zucchini squash infected by F1F2L3-CMV, a pseudorecombinant virus was showed to change drastically the severe mosaic and stunting symptom into a mild chlorotic spot on systemic leave, compared with Fny-CMV. To delimit the sequence of RNA3 affected the pathology, various RNA3 chimeras were constructed between two strains of CMV. The symptom determinants of F1F2L3-CMV were mapped to the positions amino acid 234, 239, and 250 in 3a movement protein (MP). RNA3 chimeras changed the sequences encoding three amino acids were resulted in alteration of systemic symptom.