• 제목/요약/키워드: Cu-Cu Bonding

검색결과 338건 처리시간 0.021초

Al과 스텐레스강의 주조접합을 위한 STS430(Fe-17wt.%Cr)강의 표면처리 특성연구 (A Study on the Surface Characterization of Fe-17wt.%Cr Steel for Cast-bonding of Al and Stainless Steel)

  • 김억수
    • 한국주조공학회지
    • /
    • 제25권3호
    • /
    • pp.134-141
    • /
    • 2005
  • To overcome the undesirable deformation, peeling off and geometrical restrictions which were mainly caused by differences in thermal expansion coefficients during the cladding of aluminum strip and stainless strip, new processing method based on vacuum die casting is designed and implemented in fabricating Al/Fe-17wt%Cr steel(stainless steel). To increase cast-bonding ability, the surface of Fe-17wt%Cr steel is electrochemically etched to have optimum pit size and density. The optimum conditions to generate best pit are as follows: Solution: 1 M $Fecl_{3}$+1 M Nacl, Addition: $CuCl_{2}+HCl$, Current density: 80 $mA/cm^{2}$, Total current: 400 $coulomb/cm^{2}$, AC frequency :60 Hz.

초음파를 이용한 Sn-3.5Ag 플립칩 접합부의 신뢰성 평가 - Si웨이퍼와 Sn-3.5Ag 솔더의 접합 계면 특성 연구 (Flip Chip Solder Joint Reliability of Sn-3.5Ag Solder Using Ultrasonic Bonding - Study of the interface between Si-wafer and Sn-3.5Ag solder)

  • 김정모;김숙환;정재필
    • 마이크로전자및패키징학회지
    • /
    • 제13권1호통권38호
    • /
    • pp.23-29
    • /
    • 2006
  • Si-웨이퍼와 FR-4 기판을 상온에서 초음파 접합한 후, 접합부의 신뢰성을 평가하였다. Si-웨이퍼 상의 UBM(Under Bump Metallization)은 위에서부터 Cu/ Ni/ Al을 각각 $0.4{\mu}m,\;0.4{\mu}m,\;0.3{\mu}m$의 두께로 전자빔으로 증착하였다. FR-4 기판위의 패드는 위에서부터 Au/ Ni/ Cu를 각각 $0.05{\mu}m,\;5{\mu}m,\;18{\mu}m$의 두께로 전해 도금하여 형성하였다. 접합용 솔도로는 Sn-3.5wt%Ag을 두께 $100{\mu}m$으로 압연하여 사용하였다. 시편의 초음파 접합을 위하여 초음파 접합 시간을 0.5초에서 3.0초까지 0.5초 단위로 증가시키면서 상온에서 접합하였으며, 이 때 출력은 1,400W로 하였다. 실험 결과, 상온 초음파 접합법에 의해 신뢰성 있는 'Si-웨이퍼/솔더/FR-4기판' 접합부를 얻을 수 있었다. 접합부의 전단 강도는 접합 시간에 따라 증가하여 접합 시간 2.5초에서 65N으로 가장 높게 측정되었다. 이 후 접합 시간 3.0초에서는 전단 강도가 34N으로 감소하였는데, 이는 초음파 접합시간이 과도해지면서 Si-웨이퍼와 솔더 사이의 계면을 따라 균열이 발생되었기 때문으로 판단된다. 초음파 접합에 의해 Si-웨이퍼와 솔더 사이에서 생성된 금속간 화합물은 ($(Cu,Ni)_{6}Sn_{5}$)으로 확인되었다.

  • PDF

$Ar^+$ RF 플라즈마 처리조건이 임베디드 PCB내 전극 Cu박막과 ALD $Al_2O_3$ 박막 사이의 계면파괴에너지에 미치는 영향 (Effect of $Ar^+$ RF Plasma Treatment Conditions on Interfacial Adhesion Energy Between Cu and ALD $Al_2O_3$ Thin Films for Embedded PCB Applications)

  • 박성철;이장희;이정원;이인형;이승은;송병익;정율교;박영배
    • 마이크로전자및패키징학회지
    • /
    • 제14권1호
    • /
    • pp.61-68
    • /
    • 2007
  • 임베디드 PCB 기판내 유전체 재료인 Atomic Layer Deposition(ALD) $Al_2O_3$ 박막과 전극재료인 스퍼터 증착된 Cu박막 사이의 계면접착력을 $90^{\circ}$ 필 테스트방법으로 측정하여 순수 빔 굽힘을 가정한 에너지 평형 해석을 통하여 계면파괴에너지를 구하였다. $Cu/Al_2O_3$의 계면파괴에너지(${\Gamma}$)는 매우 약하여 측정할 수 없었으나, 접착력 향상층 Cr 박막을 삽입하여 $Cr/Al_2O_3$의 계면파괴에너지는 $10.8{\pm}5.5g/mm$를 얻었다. $Al_2O_3$ 표면에 $0.123W/cm^2$ 의 power density로 2분간 $Ar^+$ RF 플라즈마 전처리를 하고 Cr박막을 삽입한 $Cr/Al_2O_3$ 계면파괴에너지는 $39.8{\pm}3.2g/mm$으로 매우 크게 증가하였는데, 이는 $Ar^+$ RF 플라즈마 전처리에 따른 mechanical interlocking효과와 Cr-O 화학결합 효과가 동시에 기여한 것으로 생각된다.

  • PDF

Bonding Temperature Effects of Robust Ag Sinter Joints in Air without Pressure within 10 Minutes for Use in Power Module Packaging

  • Kim, Dongjin;Kim, Seoah;Kim, Min-Su
    • 마이크로전자및패키징학회지
    • /
    • 제29권4호
    • /
    • pp.41-47
    • /
    • 2022
  • Ag sintering technologies have received great attention as it was applied to the inverter of Tesla's electric vehicle Model III. Ag sinter bonding technology has advantages in heat dissipation design as well as high-temperature stability due to the intrinsic properties of the material, so it is useful for practical use of SiC and GaN devices. This study was carried out to understand the sinter joining temperature effect on the robust Ag sintered joints in air without pressure within 10 min. Electroplated Ag finished Cu dies (3 mm × 3 mm × 2 mm) and substrates (10 mm × 10 mm × 2 mm) were introduced, respectively, and nano Ag paste was applied as a bonding material. The sinter joining process was performed without pressure in air with the bonding temperature as a variable of 175 ℃, 200 ℃, 225 ℃, and 250 ℃. As results, the bonding temperature of 175 ℃ caused 13.21 MPa of die shear strength, and when the bonding temperature was raised to 200 ℃, the bonding strength increased by 157% to 33.99 MPa. When the bonding temperature was increased to 225 ℃, the bonding strength of 46.54 MPa increased by about 37% compared to that of 200 ℃, and even at a bonding temperature of 250 ℃, the bonding strength exceeded 50 MPa. The bonding strength of Ag sinter joints was directly influenced by changes in the necking thickness and interfacial connection ratio. In addition, developments in the morphologies of the joint interface and porous structure have a significant effect on displacement. This study is systematically discussed on the relationship between processing temperatures and bonding strength of Ag sinter joints.

반도체 3차원 칩 적층을 위한 미세 범프 조이닝 기술 (Micro-bump Joining Technology for 3 Dimensional Chip Stacking)

  • 고영기;고용호;이창우
    • 한국정밀공학회지
    • /
    • 제31권10호
    • /
    • pp.865-871
    • /
    • 2014
  • Paradigm shift to 3-D chip stacking in electronic packaging has induced a lot of integration challenges due to the reduction in wafer thickness and pitch size. This study presents a hybrid bonding technology by self-alignment effect in order to improve the flip chip bonding accuracy with ultra-thin wafer. Optimization of Cu pillar bump formation and evaluation of various factors on self-alignment effect was performed. As a result, highly-improved bonding accuracy of thin wafer with a $50{\mu}m$ of thickness was achieved without solder bridging or bump misalignment by applying reflow process after thermo-compression bonding process. Reflow process caused the inherently-misaligned micro-bump to be aligned due to the interface tension between Si die and solder bump. Control of solder bump volume with respect to the chip dimension was the critical factor for self-alignment effect. This study indicated that bump design for 3D packaging could be tuned for the improvement of micro-bonding quality.

Collective laser-assisted bonding process for 3D TSV integration with NCP

  • Braganca, Wagno Alves Junior;Eom, Yong-Sung;Jang, Keon-Soo;Moon, Seok Hwan;Bae, Hyun-Cheol;Choi, Kwang-Seong
    • ETRI Journal
    • /
    • 제41권3호
    • /
    • pp.396-407
    • /
    • 2019
  • Laser-assisted bonding (LAB) is an advanced technology in which a homogenized laser beam is selectively applied to a chip. Previous researches have demonstrated the feasibility of using a single-tier LAB process for 3D through-silicon via (TSV) integration with nonconductive paste (NCP), where each TSV die is bonded one at a time. A collective LAB process, where several TSV dies can be stacked simultaneously, is developed to improve the productivity while maintaining the reliability of the solder joints. A single-tier LAB process for 3D TSV integration with NCP is introduced for two different values of laser power, namely 100 W and 150 W. For the 100 W case, a maximum of three dies can be collectively stacked, whereas for the 150 W case, a total of six tiers can be simultaneously bonded. For the 100 W case, the intermetallic compound microstructure is a typical Cu-Sn phase system, whereas for the 150 W case, it is asymmetrical owing to a thermogradient across the solder joint. The collective LAB process can be realized through proper design of the bonding parameters such as laser power, time, and number of stacked dies.

λ/4 모드 PVDF 초음파 트랜스듀서에 있어서 전극 사이의 접합층이 성능에 미치는 영향 (Effect of a Bonding Layer between Electrodes on the Performance of a λ/4-Mode PVDF Ultrasound Transducer)

  • ;하강렬;김무준;김정순
    • 한국음향학회지
    • /
    • 제33권2호
    • /
    • pp.102-110
    • /
    • 2014
  • 양 전극 사이에 압전층 외에 비압전성의 접합층이 존재하는 ${\lambda}/4$ 모드 PVDF 초음파 트랜스듀서에 있어서 그 접합층이 트랜스듀서의 성능에 미치는 영향을 등가회로에 의해 해석하였다. 등가회로로서는 Kikuchi 등이 제안한 전송선로 모델[Sound of IEICE, 55-A, 331-338 (1981)]을 도입하였는데, 먼저 그 모델에 의한 해석의 타당성을 $80{\mu}m$ 두께의 PVDF 압전막이 동(Cu) 후면체에 부착되는 세 가지 경우를 가정한 KLM 모델과의 비교를 통해 검증하였다. 다음으로, 그 압전막과 더불어 $5{\mu}m{\sim}20{\mu}m$ 두께의 에폭시 접합층을 갖는 다섯 개의 트랜스듀서를 제작하여 펄스 에코 응답을 측정한 후 시뮬레이션 결과와 비교하였다. 두 결과는 서로 잘 일치하였는바, 도입한 Kikuchi 모델에 의해 접합층이 트랜스듀서의 성능에 미치는 영향을 파악할 수 있음을 알았는데, 접합층이 $20{\mu}m$일 때는 그 접합층이 없을 때에 비해 중심주파수와 대역폭은 각각 약 19.7 %, 25.0 % 감소하고, 삽입손실은 57.2 % 증가하는 것으로 나타났다.

신뢰성 평가를 위한 자동차 전장 부품의 기계적 접합강도 특성 및 오차범위에 관한 연구 (A Study on the Characteristics and Error Ranges of Automotive Application Component's Mechanical Bonding Strength for the Its Reliability Evaluation)

  • 전유재;김도석;신영의
    • 한국전기전자재료학회논문지
    • /
    • 제24권12호
    • /
    • pp.949-954
    • /
    • 2011
  • In this study, the characteristics and error ranges of the mechanical bonding strength were analyzed according to before and after thermal shock test for various chips of automotive application component using Sn-3.0Ag-0.5Cu solder. In the after thermal shock test, the mechanical bonding strengths tend to decrease, meanwhile decreasing rates of mechanical strengths were less then 12% at specimen's bonding area below 3.5$mm^2$, and were from 17 to 21% at specimen's bonding area above 12 $mm^2$. On the other hand, Specimen's mean deviation rates were about 5% at specimen's bonding area more than 12 $mm^2$. Inversely, at specimen's bonding area is less then 3.5 $mm^2$, mean deviation rates were increased to about 8%. It means that the smaller device size is, the larger mean deviation rate. In addition, error ranges and deviation rates of the mechanical bonding strengths may differ slightly depending on their bonding area. Furthermore, process conditions as well as method of mechanical reliability evaluation should be established to reduce the error ranges of bonding strength.

액상확산접합법을 이용한 Ti 금속기복합재료 제조에 관한 연구 (A Study on Fabrication of Ti Matrix Composites by Liquid Phase Diffusion Bonding)

  • 김경미;우인수;강정윤;이상래
    • 한국재료학회지
    • /
    • 제6권2호
    • /
    • pp.210-220
    • /
    • 1996
  • The purpose of this study is to develop the processing techniques of Fiber Reinforced Metal by Liquid Phase Diffusion Bonding method with SiC fiber as a reinforcing material and CP Ti(Commercial Pure) as a matrix. The microstructure and the distribution of elements in reaction and CP Ti(Commercial Pure) as a matrix. The microstructure and the distribution of elements is reaction zone among CP Ti/Ti-15wt%Cu-20wt%Ni(TCN20)/SiC long fiber were investigated by Optical Microscope, SEM/EDX, EPMA, X-ray and AES. The results obtained in this study are as follows. 1) When Ti matrix composite materials are fabricated under the bonding condition of 1273Kx1200sec, the SiC long fiber was the most suitable reinforcing material for Ti matrix composite materials. 2) With SiC long fiber under same condition, a TiC layer(1.0-1.6$\mu\textrm{m}$) was observed on the surface of SiC long fiber. 3) Liquid Phase Diffusion Bonding has shown the feasibility of production of Ti matrix composite materials.

  • PDF

탄소나노튜브 함유 Solderable 도전성 접착제의 전기적/기계적 접합특성 평가 (Electrical and Mechanical Properties of CNT-filled Solderable Electrically Conductive Adhesive)

  • 임병승;정진식;이정일;오승훈;김종민
    • 반도체디스플레이기술학회지
    • /
    • 제10권4호
    • /
    • pp.37-42
    • /
    • 2011
  • In this paper, novel carbon nanotube (CNT)-filled Solderable electrically conductive adhesive (ECA) and joining process have been developed. To investigate the bonding characteristics of CNT-filled Solderable ECA, three types of Solderable ECAs with different CNT weight percent (0, 0.1, 1wt%) were formulated. For a joining process, the quad flat package (QFP) chip was used. The QFP chip had a size of $14{\times}14{\times}2.7$ mm and a 1 mm lead pitch. The test board had a Cu daisy-chained pattern with 18 ${\mu}m$ thick. After the bonding process, the bonding characteristics such as morphology of conduction path, electrical resistance and pull strength were measured for each formulated ECAs. As a result, the electrical and mechanical bonding characteristics for a QFP joints using CNT-filled ECA were improved about 10% compared to those of QFP joints using ECA without CNT.