• Title/Summary/Keyword: Cu alloy

Search Result 1,288, Processing Time 0.026 seconds

Effect of Mold Coatings on the Macrostructures of Cu-5%Sn Alloy (Cu-5% Sn합금(合金)의 주조조직(鑄造組織)에 미치는 도형재(塗型材)의 영향(影響)에 관(關)한 연구(硏究))

  • Choi, Young-Sung;Choi, Chang-Ock
    • Journal of Korea Foundry Society
    • /
    • v.5 no.3
    • /
    • pp.19-26
    • /
    • 1985
  • This study has been carried out to examine into wettability of Cu-5%Sn alloy in $Al_2O_3$, MgO, $SiO_2$ and graphite, respectively and investigated into the change in macrostructure of Cu-5%Sn alloy according to kind and mixing rate of mold-coating. The results obtained from the experiment are summerized as follows; 1. Cu Cu-5%Sn alloy, wettabilities of $Al_2O_3$ and MgO were good, on the other hand, wettabilities of $SiO_2$ and graphite were bad. 2. The fine equiaxed zone was created because of the role of $Al_2O_3$ and MgO as preferential nucleation sites. 3. Notwithstanding change of mixing rate of $SiO_2$ in mold coating the equixed zone was not created. 4. The area of equiaxed zone was varied according to mixing rate in the case of using $Al_2O_3$ and MgO in mold-coating.

  • PDF

A Study on the Thermal Oxidation and Wettability of Lead-free Solders of Sn-Ag-Cu and Sn-Ag-Cu-In

  • Lee, Hyunbok;Cho, Sang Wan
    • Applied Science and Convergence Technology
    • /
    • v.23 no.6
    • /
    • pp.345-350
    • /
    • 2014
  • The surface oxidation mechanism of lead-free solder alloys has been investigated with multiple reflow using X-ray photoelectron spectroscopy. It was found that the solder surface of Sn-Ag-Cu-In solder alloy is surrounded by a thin $InO_x$ layer after reflow process; this coating protects the metallic surface from thermal oxidation. Based on this result, we have performed a wetting balance test at various temperatures. The Sn-Ag-Cu-In solder alloy shows characteristics of both thermal oxidation and wetting balance better than those of Sn-Ag-Cu solder alloy. Therefore, Sn-Ag-Cu-In solder alloy is a good candidate to solve the two problems of easy oxidation and low wettability, which are the most critical problems of Pb-free solders.

The Effects of Solution Heat Treatment and Aging Treatment on the Electrical Conductivity and Hardness of Cu-Cr Alloys (크롬동합금의 도전율과 경도에 미치는 용체화처리와 시효처리의 영향)

  • Kim, Shin Woo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.15 no.1
    • /
    • pp.21-24
    • /
    • 2002
  • The electrode materials for welding machine in automobile industry such as Cu-Cr, Cu-Zr and Cu-$Al_2O_3$ require the high electrical conductivity and the proper hardness. Therefore the effects of solution heat treatment and aging treatment on the electrical conductivity and hardness of Cu-0.8wt%Cr and Cu-1.2wt%Cr alloys have been investigated. Cu-0.8wt%Cr alloy showed the higher electrical conductivity and hardness than Cu-1.2wt%Cr alloy and both alloys showed the better electrical conductivity at $930^{\circ}C$ among 930, 980 and $1030^{\circ}C$ solution heat treatment temperatures. The electrical conductivity and hardness in both alloys were not affected by aging treatment but remarkably affected by solution heat treatment temperature. The final drawing process reduced electrical conductivity and increased hardness more in Cu-1.2wt%Cr alloy.

Effect of Heat Treatment on Microstructure and Mechanical Properties of Al-Zn-Mg-Cu-Si Sintered Alloys with and Without High-energy Ball Milling (Al-Zn-Mg-Cu-Si 소결합금의 미세조직과 기계적 특성에 미치는 열처리의 영향)

  • Junho Lee;Seonghyun Park;Sang-Hwa Lee;Seung Bae Son;Seok-Jae Lee;Jae-Gil Jung
    • Journal of Powder Materials
    • /
    • v.30 no.6
    • /
    • pp.470-477
    • /
    • 2023
  • The effects of annealing on the microstructure and mechanical properties of Al-Zn-Mg-Cu-Si alloys fabricated by high-energy ball milling (HEBM) and spark plasma sintering (SPS) were investigated. The HEBM-free sintered alloy primarily contained Mg2Si, Q-AlCuMgSi, and Si phases. Meanwhile, the HEBM-sintered alloy contains Mg-free Si and θ-Al2Cu phases due to the formation of MgO, which causes Mg depletion in the Al matrix. Annealing without and with HEBM at 500℃ causes partial dissolution and coarsening of the Q-AlCuMgSi and Mg2Si phases in the alloy and dissolution of the θ-Al2Cu phase in the alloy, respectively. In both alloys, a thermally stable α-AlFeSi phase was formed after long-term heat treatment. The grain size of the sintered alloys with and without HEBM increased from 0.5 to 1.0 ㎛ and from 2.9 to 6.3 ㎛, respectively. The hardness of the sintered alloy increases after annealing for 1 h but decreases significantly after 24 h of annealing. Extending the annealing time to 168 h improved the hardness of the alloy without HEBM but had little effect on the alloy with HEBM. The relationship between the microstructural factors and the hardness of the sintered and annealed alloys is discussed.

Hardness and Microstructures of Ti-Zr-(Cu) based Alloys for Dental Castings (치과주조용 Ti-Zr-(Cu)계 합금의 경도 및 미세조직)

  • Joo, Kyu-Ji
    • Journal of Technologic Dentistry
    • /
    • v.27 no.1
    • /
    • pp.65-71
    • /
    • 2005
  • Experimental Ti-13%Zr and Ti-13%Zr-5%Cu alloys were made in an argon-arc melting furnace. The grade 2 CP Ti was used to control. The alloys were cast into phosphate bonded $SiO_2$ investment molds using an argon-arc casting machine, and The hardness and microstructures of the castings were investigated in order to reveal their possible use for new dental casting materials and to collect useful data for alloy design. The hardness of the Ti-13%Zr-5%Cu alloy(379Hv) became higher than that of Ti-13%Zr(317Hv) alloy, and the hardness of this alloys became higher than that of CP Ti(247Hv). Increasing in the hardness of the Ti-13%Zr-5%Cu alloy was considered to be solid solution hardening as the Ti-Zr system shows a completely solid solution for both high temperature $\beta$phase and low temperature $\alpha$ phase and also the inclusion of the eutectoid structure($\alpha Ti+Ti_{2}Cu$). No martensitic structures are observed in the specimen made of CP Ti, but Ti-13%Zr and Ti-13%Zr-5%Cu alloys show a kind of martensitic structure. Ti-13%Zr-5%Cu shows the finest microstructure. From these results, it was concluded that new alloys for dental casting materials should be designed as Ti-Zr-Cu based alloys.

  • PDF

A Characteristics of Thick and Hard Al-Cu Alloy by Overlaying Welding Process (오버레이 용접법에 의한 Al-Cu 합금 경화후막의 특성)

  • 박정식;양변모;박경재
    • Journal of Welding and Joining
    • /
    • v.14 no.4
    • /
    • pp.53-61
    • /
    • 1996
  • It was attempted to improve the wear resistance of Al alloy under the load condition by making a formation of the thicker surface hardening alloy layers. The thicker surface hardening alloy layers were formed on 6061 Al alloys overlayed by MIG and TIG welding process with Cu powders feeding. The characteristics of hardening and wear resistance have been investigated in relation to the microstructures of alloyed layers, with a selection of optimum alloying conditions for formation of overlaying layer. The results obtained were summarized as follows With increasing feeding rate of Cu powders by MIG welding, the hardness and specific wear of the overlay weld alloys were increased. It is considered that these high hardness and specific wear of overlay weld alloys were due to the formation of Θ($Al_2Cu$) phases. With increasing feeding rate of Cu powders by TIG welding, the hardness and specific wear of the overlay weld alloys were increased in feeding rates 12 and 18g/min. However, the hardness and specific wear were decreased in the powder feeding rate 38g/min. It is considered that considered that decrease of hardness and specific wear in the powder feeding rate 38g/min due to formation of ${\gamma}$($Al_4Cu_9$) phases.

  • PDF

Influences on Distribution of Solute Atoms in Cu-8Fe Alloy Solidification Process Under Rotating Magnetic Field

  • Zou, Jin;Zhai, Qi-Jie;Liu, Fang-Yu;Liu, Ke-Ming;Lu, De-Ping
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1275-1284
    • /
    • 2018
  • A rotating magnetic field (RMF) was applied in the solidification process of Cu-8Fe alloy. Focus on the mechanism of RMF on the solid solution Fe(Cu) atoms in Cu-8Fe alloy, the influences of RMF on solidification structure, solute distribution, and material properties were discussed. Results show that the solidification behavior of Cu-Fe alloy have influenced through the change of temperature and solute fields in the presence of an applied RMF. The Fe dendrites were refined and transformed to rosettes or spherical grains under forced convection. The solute distribution in Cu-rich phase and Fe-rich phase were changed because of the variation of the supercooling degree and the solidification rate. Further, the variation in solute distribution was impacted the strengthening mechanism and conductive mechanism of the material.

Change in Thermal Diffusivity of Al-Si-Mg-Cu Alloy According to Heat Treatment Conditions at Automotive Engine Operating Temperature (Al-Si-Mg-Cu 합금의 자동차 엔진 사용 온도에서 열처리 조건에 따른 열확산도 변화)

  • Choi, Se-Weon
    • Korean Journal of Materials Research
    • /
    • v.31 no.11
    • /
    • pp.642-648
    • /
    • 2021
  • The precipitation effect of Al-6%Si-0.4%Mg-0.9%Cu-(Ti) alloy (in wt.%) after various heat treatments was studied using a laser flash device (LFA) and differential scanning calorimetry (DSC). Solid solution treatment was performed at 535 ℃ for 6 h, followed by water cooling, and samples were artificially aged in air at 180 ℃ and 220 ℃ for 5 h. The titanium-free alloy Al-6%Si-0.4%Mg-0.9%Cu showed higher thermal diffusivity than did the Al-6%Si-0.4%Mg-0.9%Cu-0.2%Ti alloy over the entire temperature range. In the temperature ranges below 200 ℃ and above 300 ℃, the value of thermal diffusivity decreased with increasing temperature. As the sample temperature increased between 200 ℃ and 400 ℃, phase precipitation occurred. From the results of DSC analysis, the temperature dependence of the change in thermal diffusivity in the temperature range between 200 ℃ and 400 ℃ was strongly influenced by the precipitation of θ'-Al2Cu, β'-Mg2Si, and Si phases. The most important factor in the temperature dependence of thermal diffusivity was Si precipitation.

A study on Electrical and Diffusion Barrier Properties of MgO Formed on Surface as well as at the Interface Between Cu(Mg) Alloy and $SiO_2$ (Cu(Mg) alloy의 표면과 계면에서 형성된 MgO의 확산방지능력 및 표면에 형성된 MgO의 전기적 특성 연구)

  • Jo, Heung-Ryeol;Jo, Beom-Seok;Lee, Jae-Gap
    • Korean Journal of Materials Research
    • /
    • v.10 no.2
    • /
    • pp.160-165
    • /
    • 2000
  • We have investigated the electrical and diffusion barrier properties of MgO produced on the surface of Cu (Mg) alloy. Also the diffusion barrier property of the interfacial MgO between Cu alloy and $SiO_2$ has been examined. The results show that the $150\;{\AA}$-MgO layer on the surface remains stable up to $700^{\circ}C$, preventing the interdiffusion of C Cu and Si in Si/MgO/Cu(Mg) structure. It also has the breakdown voltage of 4.5V and leakage current density of $10^{-7}A/\textrm{cm}^2/$. In addition, the combined structure of $Si_3N4(100{\AA})/MgO(100{\AA})$ increases the breakdown voltage up to lOV and reduces the leakage current density to $8{\tiems}10^{-7}A/\textrm{cm}^2$. Furthermore, the interfacial MgO formed by the chemical reac­t tion of Mg and $SiO_2$ reduces the diffusion of copper into $SiO_2$ substrate. Consequently, Cu(Mg) alloy can be applied as a g gate electrode in TFT /LCDs, reducing the process steps.

  • PDF

Effect of Annealing on Microstructural and Mechanical Property Variation of the Oxide-Dispersion-Strengthened Cu alloy (산화물 분산강화 동합금의 열처리에 따른 미세조직 및 기계적 특성 변화)

  • Kim Yong-Suk
    • Journal of Powder Materials
    • /
    • v.13 no.1 s.54
    • /
    • pp.25-32
    • /
    • 2006
  • The alumina dispersion-strengthened (DS) C15715 Cu alloy fabricated by a powder metallurgy route was annealed at temperatures ranging from $800^{\circ}C\;to\;1000^{\circ}C$ in the air and in vacuum. The effect of the annealing on microstructural stability and room-temperature mechanical properties of the alloy was investigated. The microstructure of the cold rolled OS alloy remained stable until the annealing at $900^{\circ}C$ in the air and in vacuum. No recrystallization of original grains occurred, but the dislocation density decreased and newly formed subgrains were observed. The alloy annealed at $1000^{\circ}C$ in the air experienced recrystallization and grain growth took place, however annealing in vacuum at $1000^{\circ}C$ did not cause the microstructural change. The mechanical property of the alloy was changed slightly with the annealing if the microstructure remained stable. However, the strength of the specimen that was recrystallized decreased drastically.